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Abstract

Results from the many years of work on linear least squares problems
are combined with a new approach to perturbation analysis to explain in
a definitive way the sensitivity of these problems to perturbation. Simple
expressions are found for the asymptotic size of optimal backward errors
for least squares problems. It is shown that such formulas can be used
to evaluate condition numbers. For full rank problems, Frobenius norm
condition numbers are determined exactly, and spectral norm condition
numbers are determined within a factor of square-root-two. As a result,
the necessary and sufficient criteria for well conditioning are established.
A source of ill conditioning is found that helps explain the failure of sim-
ple iterative refinement. Some textbook discussions of ill conditioning are
found to be fallacious, and some error bounds in the literature are found
to unnecessarily overestimate the error. Finally, several open questions are
described.
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This paper is dedicated to John von Neumann at the centennial of his birth on
28th December 1903.

1 Introduction

On the Shoulders of Giants Alan Turing [58] introduced the sensitivity
of a numerical problem’s solution to changes in its data as a way to measure
the difficulty of solving the problem accurately. “Condition numbers” are now
regarded as fundamental to understanding numerical calculations. Yet textbooks
exhibit surprisingly few. For every problem whose condition number is given, it
is easy to find another whose optimal (minimal) condition number is unknown.

The year before Turing’s contribution, John von Neumann [41] mentioned the
converse sensitivity of a problem’s data to changes in the solution. He observed,
an inaccurate solution may solve the problem for some perturbed data, and
he suggested, the size of perturbation (which now is called backward error) is
the more appropriate measure of numerical accuracy. Oettli and Prager [42]
rediscovered von Neumann’s point of view years later, and showed by example
that formulas could be derived for optimal (minimal) backward errors.

This paper uses linear least squares problems to illustrate an unanticipated
combination of von Neumann’s and Turing’s ideas. It is proved that optimal con-
dition numbers in general depend on the size of optimal backward errors. Since
the differential theory of metric projections [11] [25] provides asymptotic expres-
sions for the latter, in principle it is possible to derive the condition numbers.
Indeed, all the formulas are easy to evaluate for linear least squares problems.
This results in simple expressions for the size of optimal backward errors and
for condition numbers of the problems.

The optimal formulas describe the perturbational properties of linear least
squares problems in a definitive manner. Thus they clarify the years of research
into these problems. Conversely, the previous work guides the interpretation of
the optimal formulas by suggesting a computable asymptotic estimate for the
optimal backward error, and by helping identify the exact spectral condition
numbers. In this way a survey of the archival literature is an integral part of
this paper, see Table 1.

Although this paper is about numerical linear algebra and error analysis,
it is reasonable to say its conclusions are broadly relevant. Among all the cal-
culations studied in numerical analysis, none are more frequently performed in
engineering, the sciences, and statistics than least squares estimation.

Optimal Backward Errors The size of optimal backward errors for linear
least squares problems was an open question for many years [31, p. 198] [49, pp.
6–7] [51, p. 163] until it was answered by Waldén, Karlson, and Sun [61] in 1995.
The discovery stimulated much additional work, in particular because the exact
size is difficult to evaluate, so bounds and estimates have been constructed for
it [27] [35] [40] [61].
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Table 1: Timeline for sensitivity analysis of linear least squares problems, and
for historical perspective, of selected contributions to solution algorithms. This
specialized list does not reflect the composition of the large literature about least
squares and related topics, for which see [10].

Algorithms, Error Bounds, Optimal Backward Errors

circa 1800 Gauss
1924 Bénoit (Cholesky) [5]
1938 Banachiewicz [4]
1944 Dwyer [17]
1958 Householder [33]
1965 Golub [21]

Businger, Golub [13]
1966 Golub, Wilkinson [24]
1967 Björck [7]

Björck [6]
1969 Hanson, Lawson [29]

Pereyra [44]
1972 Stoer [52]
1973 Wedin [62]
1974 Abdelmalek [1]

Lawson, Hanson [36]
1975 van der Sluis [59]
1977 Stewart [48]

Stewart [49]
1979 Paige [43]
1980 Eldén [19]

1983 Golub, Van Loan [22]
Lötstedt [37]

1984 Lötstedt [38]
1985 Wedin [63]
1989 Arioli, Duff, de Rijk [3]
1989 Björck [8]
1990 Higham [31]
1990 Wei [64]
1991 Björck [9]
1995 Waldén, Karlson, Sun [61]
1996 Higham [32]

Sun [55]
1997 Karlson, Waldén [35]

Sun [56]
1999 Cox, Higham [14]

Cox, Higham [15]
Gu [27]
Gu [28]

2001 Malyshev [39]
2002 Malyshev, Sadkane [40]

Regarding Gauss, an engaging account of the least squares problems that he actually
solved can be found in [34, pp. 212–214], formal histories and sources are cited in [50, p.
323–324], and translations of Gauss’s relevant writings are in [20]. As for Banachiewicz,
several papers on related topics appear in Bulletin International de l’Académie Polonaise
des Sciences et des Lettres, series A, but specifically [4] seems not to have formally
appeared before publication ceased in 1939.
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This paper finds two simple formulas that asymptotically equal the size of the
Frobenius norm optimal backward error as the approximate solution becomes
more accurate. If x0 solves the problem

min
u
‖b−Au‖2 ,

and if x = x0 + δx solves the similar problem for the perturbed matrix A + δA,
then as x nears x0, the size of the optimal backward error asymptotically is

min
δA

‖δA‖F '
∥∥(‖r0‖2

2 I + ‖x0‖2
2 AtA)−1/2Atr

∥∥
2

, (1)

provided the matrix in parentheses is invertible (usually the case), where r0 =
b−Ax0 is the least squares residual, and r = b−Ax is the approximate residual.
The meanings of “asymptotic” are explained in Section 3.1 but include that the
approximation error is o(‖δx‖2).

Equation (1) cannot be evaluated in practice because it depends on an exact
solution and residual, r0 and x0. The following, calculable expression also is
proved to asymptotically equal the size of the optimal backward error.

min
δA

‖δA‖F '
∥∥(‖r‖2

2 I + ‖x‖2
2 AtA)−1/2Atr

∥∥
2

(2)

Gu [27] showed that this quantity is boundedly near the optimal size when A
has full column rank. Karlson and Walden [35] established a lower bound that is
within half of this expression. These bounds and this paper’s asymptotic results
suggest that equation (2) is an accurate, robust estimate for the size the optimal
backward error of linear least squares problems.

Condition Numbers The condition number of linear least squares problems
has been an open question since 1966 when Golub and Wilkinson [24] found
an error bound that contains the square of the coefficient matrix’s condition
number. Many error bounds were subsequently derived, [1] [3] [7] [8] [9] [22] [29]
[31] [32] [36] [44] [48] [52] [59] [62] [64], some of which have been used to study
the conditioning of these problems.

If A has full rank, then this paper proves that the Frobenius norm relative
condition number is,

χ(LS, rel)

F (A) =
(

‖r0‖2
2

‖x0‖2
2 σ2

min

+ 1
)1/2 ‖A‖F

σmin
.

where σmin is the smallest nonzero singular value of A. Moreover, the following
expression overestimates the spectral norm relative condition number by at most
the factor

√
2,

χ(LS, rel)

2 (A) ≈
(

‖r0‖2

‖x0‖2 σmin
+ 1
)

κ2 , (3)

where κ2 = σmax/σmin is the spectral matrix condition number, and σmax is the
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largest singular value of A. This quantity has previously appeared in several
upper bounds for the error [7] [32] [36] [52] [59] [62] [64]. The only lower bound,
by van der Sluis, showed that σmax/σ2

min must be part of the condition number
[59, p. 250, rem. 5.2].

The tight limits for the spectral condition number permit definitive state-
ments to be made about the conditioning of the problem. In particular, the full
rank problem is ill conditioned with respect to perturbations of the coefficient
matrix if and only if either:

1. ‖r0‖2 is substantially larger than ‖x0‖2 σmin, or

2. A is ill conditioned.

Stoer [52] has previously noted that these criteria imply large error bounds.
However, most of the literature interprets conditions like (a) not as a separate
source of ill conditioning but rather as causing the condition number to depend
on κ2

2. The sharp bounds on the condition number imply necessary and sufficient
criteria for the problem’s condition to be governed by the square of the matrix
condition number (tangent theorem), and sufficient, geometric criteria for the
problem to be ill conditioned (secant theorem).

Applications The results of this paper are applied to investigate some ques-
tions about linear least squares problems.

1. The reason for the failure of simple iterative improvement in the famous
example of Golub and Wilkinson [24] is explained.

2. A simple example shows linear least squares problems can be ill conditioned
even though the coefficient matrix is well conditioned.

3. The error bounds in the literature are examined numerically. It is found
that some, including the bound used by lapack [2], systematically over-
estimate the error by a factor of κ2

Plan of This Paper This is the plan of the paper. Section 2 introduces
notation and supplies background information on the sensitivity analysis of nu-
merical problems. Section 3 discusses real analysis, and proves that optimal
backward errors give optimal condition numbers. Sections 4 and 5 apply results
from the previous section to derive the optimal backward error formulas and
the condition number formulas, respectively. Section 6 contains applications.
Section 7 gives a brief historical narrative, a summary of results, and a list of
open questions. A nomenclature precedes the references.

The research methodology employed in Sections 4 and 5 always begins with
a thorough review of the literature (Sections 4.1 and 5.1). Application of Section
3’s theories is kept succinct (Sections 4.2 and 5.2). The literature’s results and
this paper’s new results are then combined to clarify the understanding of least
squares problems (Sections 4.3, 5.2, 5.3, 5.4).
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2 Numerical Analysis Background

Optimal backward errors and condition numbers are intrinsic to all numerical
problems, so they can be defined quite generally. A numerical problem consists
of data y ∈ Rm, solutions x ∈ Rn, and a residual function F : Rm × Rn → Rp.
The solutions for some data y0 are those x0 at which the residual vanishes,
F (y0, x0) = 0.

With this notation it is possible to express the optimal backward errors, for
the approximate solution x ≈ x0, as the solution of a minimization problem,

µ(x) = min
y : F (y, x) = 0

‖y − y0‖ . (4)

If y attains equation (4)’s minimum, then y − y0 is an optimal backward error,
and µ(x) is its size. The size of the optimal backward error is a function of x
that depends on y0 and on the norm chosen for Rm.

The same notation can be used to define condition numbers. The current
approach owes as much to Wilkinson as to Turing, whose statistical reasoning
[58, p. 298] has not been adopted. Although Wilkinson knew of more formal
definitions, he pragmatically viewed condition numbers as the coefficients of
data perturbations in bounds for solution errors [65, p. 29]. Thus a condition
number, for data y0 and solution x0, bounds the ratio of changes in the solution
to perturbations in the data. An optimal (minimal) ratio exists in a limiting
sense for arbitrarily small data perturbations.

This can be made precise in the following way.1 Suppose there is a neigh-
borhood N of y0 for which every y ∈ N has a solution. With this assumption
and notation, an optimal condition number can be expressed as,

χ(abs)(y0) = lim
y → y0

sup
x : F (y, x) = 0

‖x− x0‖
‖y − y0‖

.

If a distinguished branch of solutions is of interest, then it is given by a function
f : N → Rn where f(y0) = x0 and f(y) = x is the desired solution of the
problem for the data y, in which case,

χ(abs)(y0) = lim sup
y → y0

‖f(y)− x0‖
‖y − y0‖

. (5)

This number is a function of y0 that depends on the norms for the data and
solution (the norms chosen for Rm and Rn, respectively) as well as on the chosen
branch of solutions, f . Often the solution is uniquely determined by the data,
so the last qualification may be unnecessary.

Usually condition numbers are wanted that are invariant with respect to
scaling the data and the solution. The simplest way to achieve this is to make

1The use of limits to define condition numbers originated with Rice [45, p. 288, def. 2]. The
limit superior version was developed by Skeel [47] and has been used by Demmel [16].
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equation (5)’s numerator and denominator relative to ‖x0‖ and ‖y0‖, respec-
tively. Equivalently,

χ(rel)(y0) =
‖y0‖
‖x0‖

χ(abs)(y0) , (6)

which is called a norm-wise relative condition number. With some justification
equation (6) might be called the condition number because for linear equations
it gives the universally recognized value of the matrix condition number. See
the example in Section 3.3.

Although it will not be used in this paper, another way to define scale-
invariant condition numbers uses norms that are relative to the selected data,
y0, and to the selected solution, x0. Examples of such norms are,

‖x‖x0 =
∥∥∥∥ x

|x0|

∥∥∥∥
∞

and ‖y‖y0 =
∥∥∥∥ y

|y0|

∥∥∥∥
∞

,

where the notation x/|x0| means each entry of x is divided by the magnitude of
the corresponding entry of the reference vector x0, and similarly for y. These
norms commonly are based on the infinity norm though any is acceptable. When
they are used in equation (5), then the result is called a component-wise relative
condition number.

Returning to Wilkinson’s point of view, condition numbers should provide a
bound on the first-order variation in the solution with respect to perturbations
of the data. The importance of equations (5) and (6) is that they give condition
numbers in Wilkinson’s sense that are optimally small.

Theorem 2.1 (Optimal Error Bounds) Suppose f : N → Rn where N is a
neighborhood of y0 ∈ Rm, and f(y0) = x0. If f is Fréchet differentiable at y0,
then equation (5)’s condition number is well defined and is the smallest possible
coefficient in any error bound of the form,

‖f(y)− x0‖ ≤ χ(abs)(y0) ‖y − y0‖ + o (‖y − y0‖) . (7)

Proof. (Part 1.) Differentiability implies χ(abs)(y0) = ‖Df(y0)‖ where the
operator norm is the one induced from the norms for Rm and Rn. This has been
remarked by Demmel [16, p. 253] and for completeness it is proved here.

The Fréchet derivative of f at y0 is the unique linear operator L = Df(y0)
for which the following (deleted) limit vanishes,

lim
y → y0

‖f(y)− f(y0)− L(y − y0)‖
‖y − y0‖

= 0 . (8)

The triangle inequality can replace the norm in the numerator with the smaller
difference of norms.

lim
y → y0

∣∣∣∣‖f(y)− f(y0)‖
‖y − y0‖

− ‖L(y − y0)‖
‖y − y0‖

∣∣∣∣ = 0
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This means, for every ε > 0 there is some δ > 0 so 0 < ‖y − y0‖ ≤ δ implies,

−ε ≤ ‖f(y)− f(y0)‖
‖y − y0‖

− ‖L(y − y0)‖
‖y − y0‖

≤ ε .

Since L is a linear operator, the second term’s supremum with respect to all
such y is ‖L‖. Thus for each ε the ratio in equation (5) has a supremum too,
which in the limit of vanishingly small ε must converge to ‖L‖.

(Part 2.) Equation (8) is equivalent to

f(y)− x0 = L(y − y0) + o (‖y − y0‖) ,

therefore
‖f(y)− x0‖ ≤ ‖L‖ ‖(y − y0)‖ + o (‖y − y0‖) .

This shows that ‖L‖ = ‖Df(y0)‖ = χ(abs)(y0) does appear in an error bound of
the kind in the theorem.

(Part 3.) Conversely, if

‖f(y)− x0‖ ≤ c ‖y − y0‖ + o (‖y − y0‖) ,

then
‖f(y)− x0‖
‖y − y0‖

≤ c +
o (‖y − y0‖)
‖y − y0‖

,

so passing to the limit superior as y → y0 gives,

χ(abs)(y0) ≤ c + 0 ,

which completes the theorem.

For component-wise relative condition numbers, equation (7)’s bound is
scale-invariant owing to the use of relative norms. The scale-invariant error
bound for norm-wise relative condition numbers is

‖f(y)− x0‖
‖x0‖

≤ χ(rel)(y0)
‖y − y0‖
‖y0‖

+ o
(
‖y − y0‖
‖y0‖

)
, (9)

where equation (6) gives the smallest possible coefficient, χ(rel)(y0), in such a
bound.

3 Pertinent Real Analysis

This section discusses some real analysis that pertains to sensitivity questions in
numerical analysis. The rest of the paper depends on this material only through
Theorems 3.3 and 3.5. Readers who are primarily interested in least squares
may begin at Section 4.
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3.1 Sensitivity Analysis of Metric Projections

Equation (4) reveals that the determination of optimal backward errors is a
metric projection from the point y0 to the set S(x) = {y : F (y, x) = 0}. As x
varies so does the set S(x). In particular, the distance, µ(x), between y0 and its
metric projection (the nearest point in the set) varies near 0 as the approximate
solution, x, varies near x0. Thus, a metric projection’s first order sensitivity
to its set’s deformations and translations gives estimates for the size of optimal
backward errors.

It might be thought that sensitivity to perturbation is best studied in terms
of derivatives. In many cases of interest these are difficult if not impossible to
evaluate directly. Instead, asymptotic analysis suggests the following concept
that indirectly leads to more tractable expressions.

Definition 3.1 (Asymptotic Equality, Rational Equivalence) Suppose
the functions f and g are defined on a neighborhood of x0 ∈ Rn and have values
in R. The functions are asymptotically equal at x0 in a rational sense,

f ' g ,

when every ε > 0 has a neighborhood of x0 where

(1− ε)g(x) ≤ f(x) ≤ (1 + ε)g(x) .

This paper uses three consequences of Definition 3.1 that are easily verified.
First, if either of two asymptotically equal functions does not vanish in a deleted
neighborhood of the point, x0, then the other also does not vanish there, and

lim
x → x0

f(x)
g(x)

= 1 . (10)

Second, asymptotic equality is an equivalence relation among functions. Third,
any function asymptotically equal to equation (4)’s function µ has the same
differential properties at x0 as µ, in the following sense.

Lemma 3.2 (Differential Equivalence) Suppose F is continuously differen-
tiable and its Jacobian matrix with respect to the first block of variables, evalu-
ated at y0 and x0, has full row rank. If equation (4)’s function µ asymptotically
equals a function f at x0, then µ − f has a vanishing Fréchet derivative there,
and consequently

µ(x) = f(x) + o(‖x− x0‖) .

Proof. For the proof see [25, cor. 2.8].

With this preparation, the following theorem shows that equation (4)’s op-
timal backward error can be estimated in an asymptotic sense by solving opti-
mization problems with simpler, linear constraints.
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Theorem 3.3 (Asymptotic Size of Optimal Backward Errors) Suppose
a numerical problem is defined by a residual function F (y, x) of the data y and
solutions x, with the following properties.

1. F : Rm × Rn → Rp is continuously differentiable.

2. There are a y0 and x0 with F (y0, x0) = 0.

3. The p×m partial Jacobian matrix J1F (y0, x0) has full row rank.

(The notation J1F (y0, x0) means the matrix of derivatives with respect to
F ’s first block of variables, y, evaluated at (y0, x0).)

Choose any norms for Rm, Rn, and Rp.

⇒ In the limit as x → x0, equation (4)’s size of the optimal backward error,
µ(x), asymptotically equals

µ(0)(x) = min
δy : J1F (y0, x0)δy = F (y0, x)

‖δy‖

= max
f : ‖J1F (y0, x0)∗f‖ ≤ 1

f(F (y0, x)) .
(11)

Definition 3.1 describes what is meant by the asymptotic equality, µ ' µ(0)

at x0.

Proof. For the proof see [25, thm. 6.1]. The result for 2-norms also can be
obtained by specializing from the case of the more general constraints treated
by Bonnans and Shapiro [11, p. 434].

Equation (11)’s optimization problems have an explicit solution for 2-norms.

Corollary 3.4 (2-norm Asymptotic Size) With the hypotheses and notation
of Theorem 3.3, if the norm chosen for Rm is the Euclidean norm, then the op-
timal backward error asymptotically equals

µ(0)(x) =
∥∥ [J1F (y0, x0)] † F (y0, x)

∥∥
2

, (12)

where † is the pseudoinverse.

3.2 Alternate Formula for Condition Numbers

There is a relationship between the size of the optimal backward error and the
condition number. Equation (5)’s limit with respect to data, y, can be replaced
by a limit with respect to solutions, x.

Theorem 3.5 (Condition Number Formula) Suppose a numerical problem
is defined by a residual function F with the following properties.

1. F : Rm × Rn → Rp is continuously differentiable.
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2. There are a y0 and x0 with F (y0, x0) = 0.

3. The p×m partial Jacobian matrix J1F (y0, x0) has full row rank.

(The first three hypotheses are those of Theorem 3.3.)

4. The p× n partial Jacobian matrix J2F (y0, x0) has full row rank.

5. There is a neighborhood N of y0 where each y ∈ N has one and only one
x ∈ Rn that solves F (y, x) = 0.

Choose any norms for Rm, Rn, and Rp.

⇒ The condition number, in equation (5), is well defined on a neighborhood
of y0.

(This is stronger than necessary since the remainder of the theorem only
evaluates χ(abs) at y0.)

⇒ The size of the optimal backward error, µ(x) in equation (4), is well defined
on a neighborhood of x0.

⇒ Equation (5)’s condition number is given by the size of the optimal back-
ward error,

χ(abs)(y0) = lim sup
x → x0

‖x− x0‖
µ(x)

. (13)

Proof. The proof depends on finding:

1. a function f of data y so x = f(y) is a solution for y,

2. a function g of x so y = g(x) is data for which x is a solution, and

3. f and g are inverses in the sense that f(g(x)) = x.

Each of these establishes one piece of the theorem’s three-part conclusion.
(Part 1.) Hypotheses 1, 2, and 4 suffice to invoke the implicit function

theorem to obtain a differentiable solution function f : Ny0 → Rn where Ny0 is
a neighborhood of y0 and f(y0) = x0. Note that the implicit function theorem
usually is stated for a nonsingular matrix, so when J2F (y0, x0) only has full
row rank, then the theorem must be applied to a subset of linearly independent
columns. (The columns select a subset of solution variables. Fix the others at
their values in x0, then obtain the selected variables from the implicit function
of y, and finally extend the function’s range to Rn by using the fixed values in
the remaining coordinates, thereby obtaining f .)

Since Rm has finite dimension, y0 has a compact, convex neighborhood in
Ny0 , and since f is continuously differentiable, it satisfies a Lipschitz condition
there. The Lipschitz constant bounds equation (5)’s suprema, which suffices
to define χ throughout the subneighborhood’s interior. This establishes the
theorem’s first conclusion.
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(Part 2.) Similarly, hypotheses 1, 2, and 3 suffice to invoke the implicit
function theorem for a differentiable function g : Nx0 → Rm where Nx0 is a
neighborhood of x0 with g(x0) = y0 and F (g(y), x) = 0 for all x ∈ Nx0 . Equation
(4) therefore has a nonempty feasible set for each of these x. The sets are closed
because F is continuous so the minimum distance from y0 to each set is attained.
This establishes the theorem’s second conclusion.

(Part 3.) In whatever space is indicated, let Bc(r) be the open ball with
center c and radius r. The immediate use is to define the limit superior in terms
of suprema over balls collapsing to the limit point,

χ(abs)(y0) = lim sup
y → y0

‖f(y)− x0‖
‖y − y0‖

= lim
ε → 0

sup
y ∈ By0 (ε)

‖f(y)− x0‖
‖y − y0‖

= lim
ε → 0

sup
x ∈ f(By0 (ε))

sup
y ∈ f−1(x) ∩ By0 (ε)

‖x− x0‖
‖y − y0‖

= lim
ε → 0

sup
x ∈ f(By0 (ε))

‖x− x0‖
inf

y ∈ f−1(x) ∩ By0 (ε)
‖y − y0‖

. (14)

Without loss of generality these limits can be restricted to ε < ε0 where ε0 is
sufficiently small that By0(ε) ⊆ Ny0 ∩N .

The next step changes the set from which y is chosen in equation (14). The
choice x ∈ f(By0(ε)) means that both the following infema are well defined and
no larger than ε,

inf
y ∈ f−1(x) ∩ By0 (ε)

‖y − y0‖ and µ(x) = inf
y : F (y, x) = 0

‖y − y0‖ .

The second infemum’s feasible set contains the first’s, so the second’s value is
a lower bound for the pair. When ε < ε0 then F (y, x) = 0 and ‖y − y0‖ < ε
together imply y ∈ By0(ε) ⊆ N so f(y) = x by hypothesis 5 which means y also
belongs to the first infemum’s feasible set. Thus the two infema are equal for
the x and ε so chosen. Equation (14) thus becomes,

χ(abs)(y0) = lim
ε → 0

sup
x ∈ f(By0 (ε))

‖x− x0‖
µ(x)

. (15)

The final step changes the set from which x is chosen in equation (15). That
Part 2’s function g is continuous and g(x0) = y0 mean, for every ε1 > 0 but
no larger than ε0 there is some δ1 > 0 so g(Bx0(δ1)) ⊆ By0(ε1). Consider any
x ∈ Bx0(δ1). Since x is a solution for the data g(x) by the choice of g, and since
f(g(x)) is a solution for the data g(x) by the choice of f , therefore f(g(x)) = x by
the choice g(x) ∈ By0(ε1) ⊆ By0(ε0) ⊆ Ny0 ∩N and by hypothesis 5. Altogether,
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Bx0(δ1) = f(g(Bx0(δ1))) ⊆ f(By0(ε1)) ,

from which follows the inequality,

∀ ε1 < ε0, ∃ δ1 : sup
x ∈ f(By0 (ε1))

‖x− x0‖
µ(x)

≥ sup
x ∈ Bx0 (δ1)

‖x− x0‖
µ(x)

. (16)

Conversely, that Part 1’s function f is continuous and f(y0) = x0 mean, for
every ε2 > 0 there is some δ2 > 0 so that f(By0(δ2)) ⊆ Bx0(ε2). This gives the
reverse inequality,

∀ ε2, ∃ δ2 : sup
x ∈ f(By0 (δ2))

‖x− x0‖
µ(x)

≤ sup
x ∈ Bx0 (ε2)

‖x− x0‖
µ(x)

. (17)

The complementary inequalities in equations (16) and (17) allow equation (15)’s
x to be chosen from the set Bx0(ε) without affecting the value of the limit. Thus
the derivation continues from equation (15) and concludes as follows,

χ(abs)(y0) = lim
ε → 0

sup
x ∈ Bx0 (ε)

‖x− x0‖
µ(x)

= lim sup
x → x0

‖x− x0‖
µ(x)

.

Theorems 3.3 and 3.5 combine to express the condition number in terms of
the asymptotic estimates for the optimal backward error.

Corollary 3.6 Under the hypotheses of Theorem 3.5, equation (5)’s condition
number is given by equation (11)’s asymptotic expression for the size of the
optimal backward error,

χ(abs)(y0) = lim sup
x → x0

‖x− x0‖
µ(0)(x)

. (18)

Proof. For the data y0 with exact solution x0 and any approximate solution
x ≈ x0, the size of the optimal backward error, µ(x), vanishes if and only if x
solves the numerical problem for the data y0. Theorem 3.5’s fifth hypothesis
says that x0 is the unique solution for y0. Thus x 6= x0 implies µ(x) 6= 0. It is
therefore possible to invoke Definition 3.1’s consequence in equation (10),

lim
x → x0

µ(x)
µ(0)(x)

= 1 .

Multiplying this with equation (13) gives the Corollary’s equation (18).
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3.3 Example of Evaluating Condition Numbers

This section verifies Theorem 3.5 by showing that equation (13) does give the
well-known condition number for linear equations. The familiar condition num-
ber is the one that supposes only the matrix entries (and not also the right-side
vector’s entries) are perturbable data.

Problem 3.7 (LE) Solve Au = b for u, where A is a p× n matrix.

Equation (13) requires an expression for the size of optimal backward errors.
Choose some norms for Rn and Rp, and use the corresponding operator norm on
p× n matrices to measure data perturbations. By this measure, for any x 6= 0,
the size of the optimal backward error is known to be

µ(LE)(x) =
‖Ax− b‖
‖x‖

. (19)

This formula was originally derived for ∞-norms by Oettli and Prager [42],
and then for arbitrary vector norms and the induced matrix norm by Rigal
and Gaches [46]. The proofs in many textbooks are unnecessarily complicated
because they simultaneously treat perturbations to b. It is interesting that this
formula is valid even if the equations are inconsistent. Moreover, the formula
for the spectral matrix norm also minimizes the Frobenius norm of the matrix
perturbation because the optimal spectral δA has rank 1.

Before using equations (13) and (19) to evaluate condition numbers, it is
necessary to check Theorem 3.5’s hypotheses.

1. The residual function is

F (LE)(v(A), x) = Ax− b

where v(A) is Figure 1’s function that lists matrix entries in column vector
form.

2. The problem should have a solution for the given data. This is the as-
sumption that the linear equations are consistent, so suppose for the data
y0 = v(A) that Ax0 = b for some x0.

3. With Figure 1’s ordering of matrix entries it is easy to see that

J1F (LE)(v(A), x) =
[
diag(x1),diag(x2), . . . ,diag(xn)

]
where diag(xi) is the n× n diagonal matrix that replicates the i-th entry
of x on its diagonal. Therefore the hypothesis that J1F (LE)(y0, x0) has full
row rank is simply the assumption that x0 6= 0.

4. It is easy to evaluate J2F (LE)(y0, x0) = A, so the fourth hypothesis is that
A has full row rank.
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v(A) =



A1,1

...
A1,n

A2,1

...
A2,n

· · ·
Ap,1

...
Ap,n



∈ Rp×n ,

Figure 1: The function v lists the entries of p×n matrices as column vectors by
stacking the columns.

5. Uniqueness for the solution of A’s linear equations is the assumption that
A has a trivial right null space. In combination with hypothesis 4 this
means A must be invertible, which is then true of all sufficiently near
matrices.

Thus for linear equations there is considerable overlap among Theorem 3.5’s
many hypotheses. They reduce to the simple assumptions that A is nonsingular
and b 6= 0.

With Theorem 3.5’s hypotheses satisfied, equations (13) and (19) can be
combined to evaluate the condition number.

χ(LE, abs)(A) = lim sup
x → x0

‖x− x0‖
µ(LE)(x)

= lim sup
x → x0

‖x− x0‖ ‖x0‖
‖Ax− b ‖

= lim sup
δx → 0

‖δx‖ ‖x0‖
‖A δx‖

= ‖A−1‖ ‖x0‖

The relative condition number is therefore the familiar quantity,

χ(LE, rel)(A) =
‖A‖
‖x0‖

χ(LE, abs)(A) = ‖A−1‖ ‖A‖ .

This verifies that equation (13) gives the universally recognized value. Theorem
3.5 can be used with confidence to evaluate condition numbers of problems more
complicated than linear equations.
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4 Optimal Backward Errors for Least Squares

4.1 Literature on Optimal Backward Error

Having completed the preparations of the previous sections, the subject of re-
mainder of the paper is the linear least squares problem (LS).

Problem 4.1 (LS) Solve
min

u
‖b−Au‖2

where A is a m× n matrix.

For a given vector x, a backward error is a perturbation matrix, δA, for which
the given x exactly solves the perturbed problem,

min
u
‖b− (A + δA)u‖2 .

Stewart [49, p. 6, thm. 3.2] gave formulas for two such δA’s in 1977, but the
smallest size of backward errors remained open for many years [31, p. 198].

Waldén, Karlson, and Sun [61, p. 273, thm. 2.2] solved the problem in 1995.
The smallest Frobenius-norm perturbations, δA, that make a given nonzero x
into a solution of the perturbed problem were found to have size,

µ(LS)

F (x) =
(
‖r‖2

2

‖x‖2
2

+ min {0, λ}
)1/2

for λ = λmin

(
AAt − rrt

‖x‖2
2

)
,

(20)

where r = b − Ax is the approximate least-square residual of the unperturbed
problem, and λ is the smallest eigenvalue of the m×m matrix. Equation (20) is
for the Frobenius norm, but the value for the spectral norm is nearby, because
Waldén, Karlson, and Sun proved [61, p. 283],

1√
2

µ(LS)

F (x) ≤ µ(LS)

2 (x) ≤ µ(LS)

F (x) (21)

(the lower inequality is nontrivial). From equation (20) Higham [32, p. 405] [61,
p. 275] derived an equivalent formula,

µ(LS)

F (x) = min
{
‖r‖2

‖x‖2
, σ

}

for σ = σmin

([
A ,

‖r‖2

‖x‖2

(
I − rrt

‖r‖2
2

)])
,

(22)

where σ is the smallest of the m singular values of the m × (n + m) matrix.
Similar expressions hold when the vector b also is perturbable [32, p. 404, thm.
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19.5] [61, p. 276, cor. 2.1]. The special case x = 0 also has a separate formula
[61, p. 284, rem. 1].

Table 1 shows that many results followed Waldén, Karlson, and Sun’s. Some
addressed more complicated problems. Sun [56] showed that equation (20) may
apply with the extra requirement that x be the unique, minimal 2-norm solution
of the perturbed problem. He also considered problems with multiple right sides
[55]. Cox and Higham studied problems with linear constraints. Malyshev [39]
obtained a formula for the size of optimal backward errors of problems with
spherical constraints

Since equations (20) and (22) evidently are expensive to evaluate, several es-
timates were proposed. The literature contains almost a dozen bounds which are
surveyed here. The only hypothesis for many of them is that their denominators
do not vanish.

1. Stewart (1977) first derived bounds of this kind. He stated them for spec-
tral norms, but since they are realized by rank 1 perturbations, they also
hold for Frobenius norms. Stewart’s “first” bound is [49, p. 6, thm. 3.2],

µ(LS)

F (x) ≤ ‖δA‖F =
‖Atr‖2

‖r‖2
where δA = − rrtA

‖r‖2
2

. (23)

2. Stewart’s (1977) “second” bound is [49, p. 6, thm. 3.2],

µ(LS)

F (x) ≤ ‖δA‖F =
‖r − r0‖2

‖x‖2
where δA =

(r − r0)xt

‖x‖2
2

,

in which r0 = b − Ax0 is the exact least squares residual and r = b − Ax
is the approximate residual. From this Stewart concluded, if r is nearly
correct, then the backward error is small [51, p. 161].

Stewart’s second bound can be restated using r− r0 = Pr, where P is the
orthogonal projection into the column space of A,

µ(LS)

F (x) ≤ ‖δA‖F =
‖Pr‖2

‖x‖2
=

‖Ax− Pb‖2

‖x‖2
. (24)

In this form the bound and equation (19) show that the size of the optimal
backward error of the linear least squares problem is bounded by that of the
consistent linear equations Au = Pb.

3. Waldén, Karlson, and Sun’s (1995) formula has been used to obtain a
subtle bound. If Au = b is inconsistent, then r = b − Ax is not in the
column space of A and it can be shown [61, p. 275] that λ < 0 in equation
(20). In this case,

µ(LS)

F (x) =
‖r‖2

‖x‖2
− λ <

‖r‖2

‖x‖2
= µ(LE)

F (x) . (25)
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(Note the same follows from equation (24) using ‖Pr‖2 < ‖r‖2.) Thus if
Au = b is inconsistent, then the nearest least squares problem that x does
solve is too near A for x to solve the linear equations, so the problem has
a nonzero residual and therefore is still inconsistent [32, p. 405].

4. Waldén, Karlson, and Sun (1995) also showed [61, p. 279, thm. 3.2],

[
µ(LS)

2 (x)
]2 ≥ c

(rtAx)2

‖x‖2
2

(
‖Ax‖2

2 + ‖r‖2
2

)
where

c =
2

1 +
√

1− a
and a =

4 (rtAx)2(
‖Ax‖2

2 + ‖r‖2
2

)2 .

The bound is attained — meaning, it is the spectral norm of the opti-
mal backward error — under conditions depending on the eigenvectors for
equation (20)’s eigenvalue λ [61, p. 283, cor. 5.1]. As a lower bound it is
“often quite good” [61, p. 280], but an example shows it can be zero when
the backward error is not. Since 0 ≤ a ≤ 1 hence 1 ≤ c ≤ 2 so removing c
simplifies the bound without much weakening it,

µ(LS)

2 (x) ≥ | rtAx |
‖x‖2

(
‖Ax‖2

2 + ‖r‖2
2

)1/2
. (26)

5. Karlson and Waldén (1997) showed for any v [35, p. 864, eqns. 2.5–6],

µ(LS)

2 (x) ≥ ( 2−
√

2 )
| vtAt r |∥∥(‖r‖2

2 I + ‖x‖2
2A

tA
)
1/2 v

∥∥
2

.

They examined two cases of this formula: one with v = Atr,

µ(LS)

2 (x) ≥ ( 2−
√

2 )
‖Atr‖2

2∥∥(‖r‖2
2 I + ‖x‖2

2A
tA
)
1/2 Atr

∥∥
2

, (27)

and the other for the v = (‖r‖2
2 I + ‖x‖2

2A
tA)−1Atr that maximizes the

lower bound, resulting in

µ(LS)

2 (x) ≥ ( 2−
√

2 )
∥∥(‖r‖2

2 I + ‖x‖2
2A

tA
)−1/2 Atr

∥∥
2

. (28)

Tests of these bounds are described in item 6.

6. Karlson and Waldén (1997) also showed how to use a QR factorization
of A to convert equation (22) to a minimization over an arbitrary vector.
Finding the exact minimum could be costly, so they chose a test vector to
give an upper bound for the backward error [35, p. 868, eqn. 3.8].

In tests Karlson and Waldén found that the ratio between their upper
bound and equation (27)’s lower bound was “rather satisfying” [35, p.
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868]. However, they also gave a simple example in which the ratio can be
arbitrarily large [35, p. 869]. Equation (28) was not tested numerically,
but it was very accurate at 1/2 of the optimal value for the simple example
where the other bounds performed badly.

7. Gu (1999) derived an estimate that differs from the optimal size by a factor
between 1 and the golden ratio [27, p. 365, thm. 2.1],

√
5− 1
2

G1(x) ≤ µ(LS)

F (x) ≤ G1(x) .

The estimate G1(x) is stated in terms of a singular value decomposition
for A. Suppose

A = U

[
Σ
0

]
V t

where U and V are orthogonal matrices, and let[
r1

r2

]
= U tr and ρ = µ(LE)

2 (x) =
‖r‖2

‖x‖2
.

In this notation the estimate is

G1(x) = min

ρ ,

(
rt
1Σ

2(Σ2 + ρ2I)−1r1

‖r2‖2 ρ−2 + ρ2 rt
1(Σ2 + ρ2I)−2 r1

)1/2
 . (29)

Gu assumed that A has full column rank, but the derivation appears to
have no restrictions other than A have more rows than columns and the
denominators do not vanish. A special case for x = 0 is omitted for
simplicity and is identical to the one not given for equation (20).

Equation (29) cannot be evaluated in practice because ‖r2‖2 = ‖r0‖2 is
the size of the true least squares residual. An equivalent formula that is
computable is given in Section 4.3’s equation (35).

8. Gu (1999) derived another estimate that he called a special case of equation
(29) but which on inspection is a simplification and weakening of G1(x).
This estimate is [27, p. 367, cor. 2.2],

G2(x) =

(
rt
1Σ

2(Σ2 + ρ2I)−1r1

)1/2

‖x‖2
. (30)

where r1 and ρ are as in equation (29). The bounds provided by this
estimate are,

√
5− 1
2

G2(x) ≤ µ(LS)

F (x) ≤ ‖r‖2

‖r0‖2
G2(x) .

The upper bound is satisfactory when r ≈ r0, so the estimate is better
applied to small perturbations, x ≈ x0.
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9. Malyshev and Sadkane (2002) gave an algorithm [40, pp. 744-745] to eval-
uate equation (22) using Lanczos bidiagonalization. The calculation is not
described here because it does not result in a closed form expression.

The intended use for most of these bounds and estimates is to assess the
stability (meaning, the size of the backward error) for an approximate solution
of a least squares problem. Cost of evaluation is a consideration in assessing
their effectiveness. Table 2 compares their published operation counts with
those of the exact formulas. Equations (20) and (22) are evaluated näıvely by
forming and solving the dense, m × m or m × (n + m) eigenvalue or singular
value problems, respectively.

Table 2’s operation counts should be seen as preliminary. Waldén, Karlson,
and Sun [61, p. 275] and Gu [27, p. 367] suggest (but do not explain how)
equation (22) could be evaluated cheaply when a singular value decomposition
is available from solving the least squares problem. In this case, Karlson and

Table 2: Operation counts for evaluating exact formulas (=), upper bounds ( ↑),
lower bounds ( ↓), and estimates (≈) for the size of the optimal backward error of
an m×n linear least squares problem, m > n. The “reference” is to the source of
the operation count. Dense matrices are assumed, except for the sparse method
of Malyshev and Sadkane. For comparison, solving the least squares problem by
either QR or SVD methods uses O(mn2) operations [22, p. 177].

source eqn. type operation count reference

Waldén, Karlson,
Sun, 1995 [61]

(20) = O(m2n2) +O(m3) [22, p. 282]

Higham, 1995 [61] (22) = O(m3) +O(m2n) [22, p. 175]

1. Stewart, 1977 [49] (23) ↑ 4mn +O(m)

4. Waldén, Karlson,
Sun, 1995 [61]

(26) ↓ 2mn +O(m)

5. Karlson, Waldén,
1997 [35]

(27) ↓ 6mn +O(m)

5. Karlson, Waldén,
1997 [35]

(28) ↓ O(mn) +O(n3)
given QR of A

[35, p. 864]

6. Karlson, Waldén,
1997 [35]

↑ O(mn)
given QR of A

[35, p. 865]

7. Gu, 1999 [27] (29) ≈ O(mn2) [27, p. 367]

9. Malyshev, Sadkane,
2002 [40]

↑ O(` nz) for ` itera-
tions, nz nonzeroes

[40, p. 740]
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Waldén’s upper bound also might be simpler to evaluate. Gu’s formulas are
in terms of a singular value decomposition, but he did not consider reusing it
because he studied fast algorithms for structured least squares problems.

4.2 Asymptotic Size of Optimal Backward Error

This section derives an asymptotic expression for the size of optimal backward
errors for linear least squares problems.

The method of analysis is to apply Corollary 3.4’s equation (12). It is there-
fore necessary to check Theorem 3.3’s hypotheses before proceeding.

1. It is known that x solves problem (LS) if and only if At(b − Ax) = 0.
Therefore an acceptable residual function is

F (LS)(v(A), x) = At(b−Ax) (31)

where v(A) is Figure 1’s function that lists the matrix entries in column
vector form.

2. Suppose that x0 solves the least squares problem for the matrix A and the
vector b. That is, F (LS)(y0, x0) = 0 where y0 = v(A).

3. Figure 2 shows the matrix J = J1F (LS)(v(A), x). Let J0 be this matrix
evaluated at A and x0. In this case, Figure 2’s vector r is the exact least
squares residual, r0 = b−Ax0. Since Atr0 = 0, it is then easy to evaluate

J0J
t
0 = (rt

0r0) I + (xt
0x0) AtA . (32)

Thus J0 has full row rank exactly when the matrix in equation (32) is
nonsingular.

J =

=


r1 −A1,1x1 · · · rm −Am,1x1 · · · · · · −A1,1xn · · · −Am,1xn

−A1,2x1 · · · −Am,2x1
. . .

...
...

...
...

. . . −A1,n−1xn · · · −Am,n−1xn

−A1,nx1 · · · −Am,nx1 · · · · · · r1 −A1,nxn · · · rm −Am,nxn



=


rt

rt

. . .
rt

− [ x1A
t x2A

t · · · xmAt
]

Figure 2: The Jacobian matrix J = J1F (LS)(v(A), x) ∈ Rn×mn of partial deriva-
tives for equation (31)’s residual function with respect to the matrix entries or-
dered as in Figure 1. The vector r is b−Ax.
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When these three hypotheses are satisfied (that is, when equation (32)’s
matrix is nonsingular) and x ≈ x0, then equation (12) asymptotically equals the
size of the optimal backward error for linear least squares problems. Equation
(12)’s pseudoinverse is J t

0(J0J
t
0)
−1 of which J t

0(J0J
t
0)
−1/2 is irrelevant to the 2-

norm because it has orthonormal columns. Since ‖v( · )‖2 = ‖ · ‖F , the matrix
perturbations are actually measured in the Frobenius norm. All this proves the
following theorem.

Theorem 4.2 (Asymptotic Size of Optimal Backward Errors for LS)
Suppose Problem 4.1 (LS) has a solution x0 and a least squares residual r0 =
b−Ax0 with the following property.

1. The matrix ‖r0‖2
2 I + ‖x0‖2

2 AtA is nonsingular.

(This hypothesis is usually true because most least squares problems are
inconsistent, r0 6= 0.)

Let µ(LS)

F (x) be the size of the smallest Frobenius-norm perturbations, δA, for
which x solves the least squares problem with matrix A + δA.

⇒ As x nears x0, the size of optimal backward error asymptotically equals

µ(LS, 0)

F (x) =
∥∥(‖r0‖2

2 I + ‖x0‖2
2 AtA)−1/2Atr

∥∥
2

(33)

=
∥∥(‖r0‖2

2 I + ‖x0‖2
2 AtA)−1/2AtA(x0 − x)

∥∥
2

,

where r = b−Ax is the approximate least squares residual. The asymptotic
equality is in the sense of Definition 3.1.

For purposes of analysis, equation (33) may be more usefully expressed in
terms of singular value decompositions of A. The appropriate canonical decom-
position is A = UΣV t where U and V have orthonormal columns and Σ is a
square diagonal matrix of the nonzero singular values. Such a decomposition of
A does not immediately imply one for equation (32),

J0J
t
0 = ‖r0‖2

2 I + ‖x0‖2
2 V Σ2V t ,

because V V t is not necessarily equal to I. However, equation (33) applies
(J0J

t
0)
−1/2 only to the column space of V , which is invariant under the trans-

formation. In the basis of V ’s columns, the transformation is represented by

V
(
‖r0‖2

2 I + ‖x0‖2
2 Σ2

)−1/2
V t .

This gives the following corollary.

Corollary 4.3 (Asymptotic Size of Optimal Backward Errors for LS)
With the hypotheses and notation of Theorem 4.2, let A = UΣV t be a singular
value decomposition where Σ is a square diagonal matrix of A’s nonzero singular
values. Then

µ(LS, 0)

F (x) =
∥∥(‖r0‖2

2 I + ‖x0‖2
2 Σ2)−1/2ΣU tr

∥∥
2

=
∥∥(‖r0‖2

2 I + ‖x0‖2
2 Σ2)−1/2Σ2V t(x0 − x)

∥∥
2

.
(34)
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4.3 Calculable Asymptotic Estimate

Here, the previous Section’s asymptotic formula combines with the literature’s
results to identify a computable asymptotic expression. Many of the formulas
in Section 4.1’s survey are restated in Table 3 to emphasize their resemblance
to Theorem 4.2’s equation (33) for small perturbations.

• Karlson and Waldén’s second lower bound, equation (28), and equation
(33) are within a constant multiple after the substitutions r, x ↔ r0, x0.

• After some difficult manipulations (which are not given here because they
apply only to this expression), Gu’s first estimate, equation (29), can be
restated as

G1(x) = min

{
‖r‖2

‖x‖2
,

∥∥(‖r‖2
2 I + ‖x‖2

2A
tA
)−1/2Atr

∥∥
2∥∥(‖r‖2

2 I + ‖x‖2
2 AAt

)−1 r
∥∥

2
‖r‖2

}
(35)

If r ≈ r0, then Atr ≈ 0 so the denominator is∥∥(‖r‖2
2 I + ‖x‖2

2 AAt
)−1 r

∥∥
2
‖r‖2 ≈

∥∥(‖r‖2
2 I
)−1 r

∥∥
2
‖r‖2 = 1 .

In this way Gu’s first estimate and equation (33) are nearly the same under
the substitutions r, x ↔ r0, x0.

• Gu’s second estimate, equation (30), and equation (33) are identical under
these substitutions.

Thus the results of Karlson and Waldén, Gu, and Theorem 4.2 suggest that∥∥(‖r‖2
2 I + ‖x‖2

2 AtA)−1/2Atr
∥∥

2

may be an asymptotic estimate for µ(LS)

F (x). This is proved in the following
theorem. Note that this quantity is computable in practice because, unlike
equation (33), it does not depend on the true residual and solution, r0 and x0.

Theorem 4.4 (Calculable Estimate) With the hypotheses and notation of
Theorem 4.2, and if A, r0, and x0 are not zero, then for x ≈ x0 the size of the
optimal backward error asymptotically equals

µ̃(LS)

F (x) =
∥∥(‖r‖2

2 I + ‖x‖2
2 AtA)−1/2Atr

∥∥
2

,

where r = b − Ax is the approximate least squares residual. The asymptotic
equality is in the sense of Definition 3.1.

Proof. Let x = x0 + δx, so that by the triangle inequality

‖x0‖2 − ‖δx‖2 ≤ ‖x‖2 ≤ ‖x0‖2 + ‖δx‖2 ,

hence
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Table 3: Bounds and estimates for the size of the optimal backward error in coef-
ficient matrices of linear least squares problems. When a bound permits a choice
of norms, then the Frobenius norm is chosen. Red indicates a subexpression
common to some bounds.

source eqn. bound or estimate

1. Stewart, 1977 [49] (23) µ
(LS)
F (x) ≤ ‖Atr‖2

‖r‖2

2. Stewart, 1977 [49] (24) µ
(LS)
F (x) ≤ ‖Pr‖2

‖x‖2
≤ ‖Ax− Pb‖2

‖x‖2

3. Waldén, Karlson,
Sun, 1995 [61]

(25) µ
(LS)
F (x) < µ

(LE)
F (x) when b 6∈ col(A)

4. Waldén, Karlson,
Sun, 1995 [61]

(26) µ
(LS)
2 (x) ≥ | rtAx |

‖x‖2 (‖Ax‖22 + ‖r‖22)
1/2

5. Karlson, Waldén,
1997 [35]

(27) µ
(LS)
2 (x) ≥ ( 2−

√
2 )

‖Atr‖22∥∥(‖r‖22 I + ‖x‖22 AtA)1/2Atr
∥∥

2

5. Karlson, Waldén,
1997 [35]

(28) µ
(LS)
2 (x) ≥ ( 2−

√
2 )

∥∥(‖r‖22 I + ‖x‖22 AtA)−1/2Atr
∥∥

2

7. Gu, 1999 [27] (29)
√

5− 1

2
G1(x) ≤ µ

(LS)
F (x) ≤ G1(x) where

G1(x) = min

{
‖r‖2
‖x‖2

,

∥∥(‖r‖22 I + ‖x‖22 AtA)−1/2Atr
∥∥

2∥∥(‖r‖22 I + ‖x‖22 AAt)−1r
∥∥

2
‖r‖2

}

8. Gu, 1999 [27] (30)
√

5− 1

2
G2(x) ≤ µ

(LS)
F (x) ≤ ‖r‖2

‖r0‖2
G2(x) where

G2(x) =
∥∥(‖r‖22 I + ‖x‖22 AtA)−1/2Atr

∥∥
2
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(1− ε) ‖x0‖2 ≤ ‖x‖2 ≤ (1 + ε) ‖x0‖2

whenever ε ≥ ‖δx‖2/‖x0‖2. Similarly r = r0 −A δx, so

(1− ε) ‖r0‖2 ≤ ‖r‖2 ≤ (1 + ε) ‖r0‖2

provided ε ≥ ‖A δx‖2/‖r0‖2. If additionally ε < 1, then the inequalities are
preserved by the following arithmetic steps: squaring them, multiplying the
first by σ2, adding them, taking the square root. This leaves,

(1− ε) (‖r0‖2
2 + ‖x0‖2

2 σ2)1/2 ≤

(‖r‖2
2 + ‖x‖2

2 σ2)1/2

≤ (1 + ε) (‖r0‖2
2 + ‖x0‖2

2 σ2)1/2

which rearranges to,

(1− ε) (‖r‖2
2 + ‖x‖2

2 σ2)−1/2 ≤

(‖r0‖2
2 + ‖x0‖2

2 σ2)−1/2 (36)

≤ (1 + ε) (‖r‖2
2 + ‖x‖2

2 σ2)−1/2 .

Recall from equation (34) that,

µ(LS, 0)

F (x) =
∥∥(‖r0‖2

2 I + ‖x0‖2
2 Σ2)−1/2 v

∥∥
2

,

and for µ̃(LS)(x) similarly,

µ̃(LS)

F (x) =
∥∥(‖r‖2

2 I + ‖x‖2
2 Σ2)−1/2 v

∥∥
2

,

where v = ΣU tr, and A = UΣV t is Corollary 4.3’s singular value decomposition.
The operators in these equations are diagonal, so applying them to v and forming
the 2-norm gives, from equation (36),

(1− ε) µ̃(LS)

F (x) ≤ µ(LS, 0)

F (x) ≤ (1 + ε) µ̃(LS)

F (x) .

Thus, if 1 > ε > 0, then Definition 3.1’s inequality holds for x = x0 + δx with
‖δx‖2 ≤ ε min {‖x0‖2, ‖r0‖2/‖A‖2}. This proves that µ̃(LS)

F ' µ(LS, 0)

F at x0 in
Definition 3.1’s notation. Since asymptotic equality is an equivalence relation
and µ(LS, 0)

F ' µ(LS)

F at x0 by Theorem 3.3, therefore µ̃(LS)

F ' µ(LS)

F .

5 Condition Numbers for Least Squares

5.1 Literature on Error Bounds

The literature contains over one dozen error bounds for linear least squares
problems. They and their hypotheses are stated here in roughly their original
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forms. In this paper’s notation, the bounds suppose that x0 and x = x0 + δx
solve, respectively,

min
u
‖b−Au‖2 and min

u
‖(b + δb)− (A + δA)u‖2 .

The bounds for δx usually are in terms of A, δA, b, δb, x, x0, r = b − Ax, and
r0 = b − Ax0. An unstated assumption is that x0 6= 0 so it is meaningful to
discuss the relative error, ‖δx‖2/‖x0‖2.

1. Golub and Wilkinson (1966) were the first to consider bounds of this kind.
Their assumptions were,

(a) A has full column rank,

(b) ‖A‖2 = 1 and ‖b‖2 = 1,

(c) ‖δA‖2 = ε and ‖δb‖2 = ε,

(d) ε is “arbitrarily small”,

from which they derived [24, p. 144, eqn. 43],

‖δx‖2 ≤ ε κ2 + ε κ2 ‖x0‖2 + ε κ2
2 ‖r0‖2 +O(ε2) . (37)

This error bound initiated a tradition whereby κ2
2 explicitly appears in

error bounds for least squares problems. The bound is inapplicable to
most problems due to the very restrictive hypothesis (1b). This can be
removed by transforming the error bound through the following steps, after
which the dependence on κ2

2 is not evident.

• First, an examination of Golub and Wilkinson’s derivation finds that
their error bound’s first term accounts for perturbations to b while
the other terms account for perturbations to A. Grouping the terms
thusly reveals that the actual error bound is

‖δx‖2 ≤ ‖δb‖2 κ2 + ‖δA‖2 κ2 (‖x0‖2 + κ2 ‖r0‖2) +O(ε2) ,

where now ε = max{‖δA‖2, ‖δb‖2}.
• Second, hypothesis (1b) means that κ2 in Golub and Wilkinson’s

error bound is actually 1/σmin(A). With this substitution the bound
becomes

‖δx‖2 ≤ ‖δb‖2

σmin(A)
+

‖δA‖2

σmin(A)

(
‖x0‖2 +

‖r0‖2

σmin(A)

)
+O(ε2) . (38)

• Third, a general least squares problem

min
x̃
‖b̃ − Ãx̃‖2

can be scaled to satisfy hypotheses (1b) in just one way,
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min
x̃/c2

∥∥(c1 b̃)− (c2c1Ã)(x̃/c2)
∥∥

2
where c1 =

1
‖b̃‖2

, c2 =
1

‖c1Ã‖2

.

Equation (38) applies to the scaled problem with the substitutions,

term in equation (38) 7→ term in scaled problem

A 7→ c1c2 Ã r0 7→ c1 r̃0 x0 7→ x̃0/c2

δA 7→ c1c2 δÃ δb 7→ c1 δb̃ δx 7→ δx̃/c2

which result in the following bound,

‖δx̃‖2

c2
≤ ‖c1 δb̃‖2

σmin(c1c2 Ã)
+

‖c1c2 δÃ‖2

σmin(c1c2 Ã)

(
‖x̃0‖2

c2
+

‖c1 r̃0‖2

σmin(c1c2 Ã)

)
+ O(ε2) .

• Finally, removing the common denominator c2, cancelling c1 from
numerators and denominators, and discarding the tildes give,

‖δx‖2 ≤ ‖δb‖2

σmin
+
‖δA‖2

σmin

(
‖x0‖2 +

‖r0‖2

σmin

)
+
‖b‖2

‖A‖2
O(ε2) .

Thus Golub and Wilkinson’s bound when applied to a general least squares
problem is

‖δx‖2

‖x0‖2
≤ ‖δb‖2

‖b‖2

‖b‖2

‖x0‖2 σmin
+
‖δA‖2

‖A‖2

(
1 +

‖r0‖2

‖x0‖2 σmin

)
κ2 +O(ε2) , (39)

for which it is assumed,

(a) A has full column rank,
(b) ‖δA‖2/‖A‖2 ≤ ε and ‖δb‖2/‖b‖2 ≤ ε, and
(c) ε is arbitrarily small.

2. Björck (1967) credits Golub for suggesting that a bound could be derived
from the augmented system,[

r0 + Ax0

Atr0

]
=
[

I A
At

] [
r0

x0

]
=
[

b
]

. (40)

Björck assumed,

(a) A and A + δA have full column rank,
(b) α = (

√
2 + 1) ‖δA‖2/σmin < 1,

from which he obtained [7, p. 17],

‖δx‖2

‖x0‖2
≤ κ2√

1− α

(
1 +

κ2√
1− α

‖r0‖2

‖A‖2 ‖x0‖2

)
‖δA‖2

‖A‖2

+
κ2√
1− α

‖δb‖2

‖A‖2 ‖x0‖2
.

(41)
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3. Hanson and Lawson (1969) assumed

(a) A has full column rank,

(b) ε κ2 < 1,

where ε = ‖δA‖2/‖A‖2. From this they derived that A+δA has full column
rank [29, p. 794, thm. 2.3.2], and then [29, p. 797, eqn. 2.4.10],

‖δx‖2

‖x0‖2
≤ κ2

1− ε κ2

‖δb‖2

‖Ax0‖2

+
ε κ2

1− ε κ2

(
1 +

κ2

1− ε κ2

‖r0‖2

‖Ax0‖2

)
.

(42)

4. Pereyra (1969) assumed, in the notation of this paper,

(a) A has full rank,

(b) β = κ2
‖δA‖
‖A‖

(1 + κ2
‖δA‖
‖A‖

+ κ2) < 1,

(c) δb = 0.

From assumption (4b) he derived that A+ δA has the same rank as A [44,
p. 199, lem. 4.2], and then [44, p. 200, eqn. 4.8],

‖δx‖
‖x0‖

≤ 1
1− β

(
β + κ2

‖δA‖ ‖A†‖ ‖b‖
‖A‖ ‖A†b‖

)
, (43)

in which all norms can be taken to be 2-norms.

5. Stoer (1972) assumed,

(a) A and A + δA have full column rank,

(b) δA is small enough that [(A + δA)t(A + δA)]−1 can be approximated
using (I + E)−1 ≈ I − E where E = (AtA)−1(AtδA + δAtA),

from which he derived [52, p. 176, eqn. 4.8.3.5] [53, p. 212, eqn. 4.8.3.5],
in the notation of this paper,

‖δx‖2

‖x0‖2
≤̇ κ2

(
1 + κ2

‖r0‖2

σmax ‖x0‖2

)
‖δA‖2

‖A‖2
+ κ2

‖δb‖2

σmin ‖x0‖2
. (44)

6. Wedin (1973) assumed,

(a) A and A + δA have equal rank,

(b) ‖δA‖2 ≤ ε‖A‖2,

(c) ε κ2 < 1,

(d) x0 = A†b and x = x0 + δx = (A + δA)†(b + δb),
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where † is pseudoinverse, from which he obtained [62, p. 224, thm. 5.1],

‖δx‖2

‖x0‖2
≤ κ2

1− ε κ2

{
ε +

‖δb‖2

‖A‖2 ‖x0‖2
+

ε κ2 ‖r0‖2

‖A‖2 ‖x0‖2

}
+

ε ‖(AAt)†b‖2 ‖A‖2

‖x0‖2
.

(45)

The final term in equation (45) can be discarded when A has full column
rank.

7. Abdelmalek (1974) assumed,

(a) A and A + δA have equal rank,

(b) ‖A†‖2 ‖δA‖2 < 1,

from which he derived [1, p. 222, eqn. 42],

‖δx‖
‖x0‖

≤ 1
‖x0‖

[
‖A†‖ ‖δb‖

1− ‖A†‖ ‖δA‖

+
‖A†‖

1− ‖A†‖ ‖E1‖

(√
2 ‖E1‖ ‖x0‖+

‖A†‖ ‖E2‖ ‖r0‖
1− ‖A†‖ ‖E1‖

)
+

‖A†‖2 ‖E2‖ ‖δA‖
(1− ‖A†‖ ‖δA‖)2

(√
2 ‖x0‖+

‖A†‖ ‖r0‖
1− ‖A†‖ ‖δA‖

)]
,

(46)

where all norms are 2-norms, E1 = P δA, E2 = (I − P) δA, and P is the
orthogonal projection into the column space of A.

8. Lawson and Hanson (1974) assumed,

(a) A has full column rank,

(b) ε κ2 < 1,

where ε = ‖δA‖2/‖A‖2. From this they derived [36, p. 51, eqn. 9.14],

‖δx‖2

‖x0‖2
≤ κ2

1− ε κ2

[(
1 +

κ2 ‖r0‖2

‖A‖2 ‖x0‖2

)
ε +

‖δb‖2

‖A‖2 ‖x0‖2

]
. (47)

9. Van der Sluis (1975) assumed,

(a) A has full column rank,

(b) ‖δA‖2 ≤ ε‖A‖2 and ‖δb‖2 ≤ ε‖b‖2,

(c) ε κ2 < 1,

from which he obtained [59, p, 251, eqn. 5.8],
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‖δx‖2

‖x0‖2
≤ ε

(
σmax

σmin

R(x0)
σmin

tan(θ)
1− (ε κ2)2

+
σmax

σmin

1
1− ε κ2

+
R(x0)
σmin

1
cos(θ)

1
1− ε κ2

)
,

(48)

where R(x0) = ‖Ax0‖2/‖x0‖2, and θ is the angle between b and the column
space of A.

10. Stewart (1977) assumed,

(a) δA is an acute perturbation of A.

This condition appears to be due to Wedin [62, p. 228]. For purposes of
comparison with other bounds, it suffices to add the assumption,

(b) A has full column rank,

which gives a simple meaning to assumption (10a). Consider a singular
value decomposition,

A = U

[
Σ
0

]
V t ,

where U and V are orthogonal (square) matrices, and let

δA = U

[
E1

E2

]
V t .

The perturbation is acute if and only if A1 = Σ + E1 is nonsingular [51,
p. 139, thm. 3.3]. With these assumptions and notation, and with some
condensation and correction,2 Stewart’s error bound can be stated as [51,
p. 157, thm. 5.2],

‖δx‖2

‖x0‖2
≤ ‖A−1

1 ‖2 ‖E1‖2 + ‖A−1
1 ‖2

2

(
‖E2‖2 ‖r0‖2

‖x0‖2
+ ‖E2‖2

2

)
. (49)

11. Golub and Van Loan (1983) derived a bound under van der Sluis’s as-
sumptions. They assumed,

(a) A has full column rank,
(b) ‖δA‖2 ≤ ε‖A‖2 and ‖δb‖2 ≤ ε‖b‖2,
(c) ε κ2 < 1,

from which they showed [22, p. 141, eqn. 6.1-10] [23, p. 228, eqn. 5.3.8],

‖δx‖2

‖x0‖2
≤ ε

(
2 κ2

cos(θ)
+ tan(θ) κ2

2

)
+O(ε2) , (50)

where θ is the angle between b and the column space of A. This bound is
recommended by lapack [2, p. 50].

2The bound as originally stated contains a typographical error: the second occurrence of
E12 should be E21 in [48, p. 654, eqn. 5.4] [51, p. 157, eqn. 5.3].
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12. Arioli, Duff, and de Rijk (1989) assumed that each perturbation is small
compared to the corresponding entry of A or b,

(a) A has full column rank,

(b) |δA| ≤ ε |A| and |δb| ≤ ε |b|,

where, in (12b), the notation | · | applied to a matrix or vector is the like
object whose entries are the other’s magnitudes, and the inequalities apply
entry-by-entry. From these they derived [3, p. 673, eqn. 3.13],

|δx| ≤ ε |A†| (|A| |x|+ |b|) + ε | (AtA)−1| |At| |r| . (51)

13. Björck (1989) assumed that each perturbation is small compared to the
corresponding entry of a reference matrix and vector, E and f ,

(a) A has full column rank,

(b) |δA| ≤ εE and |δb| ≤ εf ,

(c) ε ρ

([
|A†|t Et |I − P|E

|(AtA)−1|Et |A†|E

])
< 1,

where the notation | · | has the meaning of assumption (12b), and ρ( · · · )
is the spectral radius of the matrix inside the parentheses. From these he
derived [8] [9, p. 240, eqn. 2.5],

|δx| ≤ ε |A†| (f + E |x0|) + ε | (AtA)−1| Et |r0|+O(ε2) . (52)

14. Higham (1990) assumed [32, p. 394],

(a) A and A + δA have full column rank,

(b) |δA| ≤ εE and |δb| ≤ εf ,

from which he derived [31, p. 203, eqn. 3.5],

|δx| ≤ ε |A†| (f + E |x|) + ε | (AtA)−1| Et |r| . (53)

The bound can be made relative by applying any absolute norm and di-
viding, for example [32, p. 394],

‖δx‖
‖x0‖

≤
ε
∥∥|A†| (f + E |x|)

∥∥+ ε
∥∥ | (AtA)−1|Et |r|

∥∥
‖x0‖

. (54)

Higham [31, p. 202] credits Arioli, Duff, and de Rijk [3] and Björck [8] [9]
for independently originating the componentwise bounds, 12 through 14. The
difference among them is that Arioli, Duff, and de Rijk’s equation (51) uses the
approximate r and x, while Björck’s equation (52) has the exact r0 and x0 as
well as E, f , and an O(ε2) term. Note that r0 and x0 seem to entail the O(ε2)
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discrepancy. Higham’s equation (53) combines the r-x and E-f versions. The
distinction between equations (51) and (52) sometimes is overlooked as when
Stewart and Sun [51, p. 163] attribute Higham’s version to Björck.

Componentwise bounds have several advantages. They appear to be sharper
than normwise bounds [31, p. 203], and with E = |A| and f = |b| they are less
sensitive to row and column scalings of the matrix [31, p. 203] [32, p. 394]. Of
course, the componentwise bounds incorporate the matrix’s nonzero structure
[51, p. 158]. Componentwise bounds for linear least squares problems were
motivated by Oettli and Prager [42], whose structured backward errors for linear
equations were applied to the augmented equation (40), and by Bunch [12], who
suggested structured perturbation analyses.

15. Wei (1990) assumed,

(a) κ2 ε ≤ 1− 1/
√

2,

where ε = ‖δA‖2/‖A‖2. For a given solution x of the problem perturbed by
δA and δb, Wei showed the unperturbed problem has a solution x0 = x−δx
with [64, p. 180, eqn. 2.7],

‖δx‖2

‖x0‖2
≤ κ2

1− 2 κ2 ε

(
2 κ2 ε

‖r0‖2

‖A‖2 ‖x0‖2
+ 2 ε +

‖δb‖2

‖A‖2 ‖x0‖2

)
+ 2 κ2 ε +

2 κ2 ε

1−
√

2 κ2 ε

‖x‖2

‖x0‖2
. (55)

Wei’s bound combines generality and simplicity. All the bounds listed here
are derived from perturbation analyses of either the least squares problem or
the pseudoinverse. The former tend to give bounds only for full rank problems;
the latter tend to give bounds in terms of decompositions of the perturbation
matrix. In contrast, equation (55) applies even to rank deficient problems yet it
depends on the perturbation matrix only through its norm.

16. Higham (1996) reworked the proof of Wedin’s bound, number 6. He used
van der Sluis’s assumptions to obtain a slightly different result that he
graciously attributed to Wedin.3 Higham assumed,

(a) A and A + δA have full column rank,
(b) ‖δA‖2 ≤ ε‖A‖2 and ‖δb‖2 ≤ ε‖b‖2,
(c) ε κ2 < 1,

from which he obtained [32, p. 392],

‖δx‖2

‖x0‖2
≤ ε κ2

1− ε κ2

{
2 + (1 + κ2)

‖r0‖2

‖A‖2 ‖x0‖2

}
. (56)

Note the hypotheses about A + δA is implied by the others.
3This and the prominence of [32] as a desk reference have led to some confusion. At least

one textbook refers to the bound as Wedin’s even though it cannot be found in his work.



5 CONDITION NUMBERS FOR LEAST SQUARES 35

It is revealing to examine the literature’s error bounds in equation (9)’s
context of small matrix perturbations. Table 4 shows the leading terms of all
the bounds that can be expanded in power series of ‖δA‖2/‖A‖2. How similar
they become! Portions of seven bounds colored blue are the same. Of these,
the bounds of Björck, Stoer, Wedin, and Lawson and Hanson are identical (for
small perturbations) and the simplest.4 Golub and Wilkinson’s bound when it
is applied to appropriately scaled least squares problems also belongs to this
group, but Table 4 does not include equation (39) because it does not actually
appear in [24].

From Theorem 2.1, the common expression found in Table 4 is an upper
bound for χ(LS, rel)

2 (A). Whether

‖r0‖2 σmax

‖x0‖2 σ2
min

+
σmax

σmin
=
(

‖r0‖2

‖x0‖2 σmin
+ 1
)

κ2 (57)

is attained as the relative spectral condition number has not been determined
in the literature. Two approaches have been taken.

• Algebraic reasoning can be used to derive an expression for δx in terms
of δA. For error bound 5, Stoer showed in the notation of this paper that
[52, p. 176] [53, p. 211],

δx = (AtA)−1 δAt r0 − (AtA)−1 At δAx0 + o(δA2) . (58)

Taking norms and dividing by ‖x0‖2 after some manipulation produces an
error bound in which the first two terms, above, become the respective
terms in equation (57)’s coefficient for ‖δA‖2/‖A‖2. Yet it is unclear how
to choose δA so that δx attains the bound. A similar expression for δx
but in terms of pseudoinverses occurs in Wedin’s analysis leading to error
bound 6 [62, p. 224].

• Van der Sluis, error bound 9, used geometric reasoning to derive upper
and lower bounds on the attainable solution error. In the notation of this
paper, these bounds are [59, p. 251, eqns. 5.8–9],

‖δx‖2

‖x‖2


≤ ε

(
‖r0‖2 σmax

‖x0‖2 σ2
min

+
σmax

σmin
+

‖b‖2

‖x0‖2 σmin

)
+O(ε2)

≥ ε

(
‖r0‖2 σmax

‖x0‖2 σ2
min

+
‖b‖2

‖x0‖2 σmin

)
+O(ε2)

,

where ε is the maximum of the normwise relative perturbations to A and
b. The lower bound unfortunately is too weak to determine the condition
number exactly [59, p. 250, rem. 5.2].

4The bounds of van der Sluis and Higham-Wedin have extra terms that account for b’s
perturbations if they are present. Wei’s bound has an unusual extra term that can be removed
by multiplying the whole bound by a small factor that is mentioned but not given in [64].
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Table 4: Leading terms in expansions with respect to ‖δA‖2/‖A‖2 for several
error bounds listed in Section 5.1. The few bounds that have separate notation
for perturbations to b are evaluated with δb = 0. Blue indicates the consensus
evidenced by seven bounds.

source of bound eqn.
leading term with

respect to ‖δA‖2/‖A‖2

2. Björck, 1967 [7] (41) ‖r0‖2 σmax

‖x0‖2 σ2
min

+
σmax

σmin

3.
Hanson and Lawson,
1969 [29] (42) ‖r0‖2 σ2

max

‖Ax0‖2 σ2
min

+
σmax

σmin

4. Pereyra, 1969 [44] (43) ‖b‖2 σmax

‖Ax0‖2 σmin
+

σ2
max

σ2
min

+
σmax

σmin

5. Stoer, 1972 [52] (44) ‖r0‖2 σmax

‖x0‖2 σ2
min

+
σmax

σmin

6. Wedin, 1973 [62] (45) ‖r0‖2 σmax

‖x0‖2 σ2
min

+
σmax

σmin

8.
Lawson and Hanson,
1974 [7] (47) ‖r0‖2 σmax

‖x0‖2 σ2
min

+
σmax

σmin

9. van der Sluis, 1975 [59] (48) ‖r0‖2 σmax

‖x0‖2 σ2
min

+
σmax

σmin
+

‖b‖2
‖x0‖2 σmin

11.
Golub and Van Loan,
1983 [22] (50) ‖r0‖2 σ2

max

‖Ax0‖2 σ2
min

+
2 ‖b‖2 σmax

‖Ax0‖2 σmin

15. Wei, 1990 [64] (55) 2 ‖r0‖2 σmax

‖x0‖2 σ2
min

+
4 σmax

σmin
+

2 ‖x‖2 σmax

‖x0‖2 σmin

16.
Higham-Wedin,
1996 [32] (56) ‖r0‖2 σmax

‖x0‖2 σ2
min

+
2 σmax

σmin
+

‖r0‖2
‖x0‖2 σmin
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5.2 Condition Numbers

This section derives an expression for the condition number of linear least squares
problems, and hence gives the best possible error bound for small perturbations.
The method of analysis is to apply Theorem 3.5. To that end, three matters
must be addressed.

First is to check the theorem’s five hypotheses. Three were checked in Section
4 when proving Theorem 4.2. The remaining two are these.

4. For the function in equation (31), it is easy to evaluate

J2F (LS)(v(A), x0) = −AtA ,

so the fourth hypothesis is that A has full column rank.

5. Since by the fourth hypothesis A has full column rank, the same is true
of every matrix that is sufficiently nearby. The least squares problems
involving these matrices have unique solutions.

In summary, Theorem 3.5’s five hypotheses are equivalent to A having full col-
umn rank and equation (32)’s matrix being nonsingular, which with the condi-
tion on A is equivalent to b 6= 0.

The second matter is to make Theorem 3.5’s choice of norms. Choosing 2-
norms for both the data and solution vectors means that matrices, considered
as data vectors, are measured by the Frobenius norm.

Third, applying Theorem 3.5 requires µ(LS)

F whose equations (20) and (22)
are difficult to evaluate, so it is more convenient to apply Corollary 3.6 which
only requires µ(LS, 0)

F . Corollary 4.3 expresses µ(LS, 0)

F in terms of a singular value
decomposition for A.

With this preparation it is possible to evaluate,

χ(LS, abs)

F (A) = lim sup
x → x0

‖x− x0‖2

µ(LS, 0)

F (x)

= lim sup
x → x0

‖x− x0‖2

‖
(
‖r0‖2

2 I + ‖x0‖2
2 Σ2

)−1/2 Σ2 V t(x0 − x)‖2

= lim sup
δx → 0

‖δx‖2

‖
(
‖r0‖2

2 I + ‖x0‖2
2 Σ2

)−1/2 Σ2 V tδx‖2

=
∥∥∥(‖r0‖2

2 I + ‖x0‖2
2 Σ2)1/2Σ−2

∥∥∥
2

=

(
‖r0‖2

2 + ‖x0‖2
2 σ2

min

)1/2

σ2
min

, (59)

where σmin is the smallest nonzero singular value of A.
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It is also possible to show that equation (59) lies within a small factor of the
spectral condition number. Waldén, Karlson, and Sun’s equation (21) implies

‖x− x0‖2

µ(LS)

F (x)
≤ ‖x− x0‖2

µ(LS)

2 (x)
≤
√

2
‖x− x0‖2

µ(LS)

F (x)
.

Passing to lim supx→x0
replaces the ratios on either end by equation (59). Ad-

ditionally multiplying by ‖A‖2/‖x0‖2 converts the quantity in the middle to the
relative spectral condition number. (Note that forming the relative condition
number introduces the requirement x0 6= 0.) This leaves,

C ≤ χ(LS, rel)

2 (A) ≤
√

2 C , (60)

where from equation (59) after some simplification,

C = χ(LS, abs)

F (A)
‖A‖2

‖x0‖2
=
(

‖r0‖2
2

‖x0‖2
2 σ2

min

+ 1
)1/2

κ2 .

It is easy to see that the literature’s consensus upper bound in equation (57)
lies between equation (60)’s limits. Thus the literature’s error bounds combined
with this paper’s results determine what is the likely spectral condition number
within a factor of

√
2.

Theorem 5.1 (Condition Numbers for LS). Suppose Problem 4.1 (LS) has
A of full column rank, b 6= 0, true solution x0, and true least squares residual
r0 = b − Ax0. This problem’s Frobenius and spectral norm absolute condition
numbers are,

χ(LS, abs)

F (A) =

(
‖r0‖2

2 + ‖x0‖2
2 σ2

min

)1/2

σ2
min

≤ χ(LS, abs)

2 (A) ≤ ‖r0‖2

σ2
min

+
‖x0‖2

σmin
.

If additionally x0 6= 0, then the Frobenius and spectral norm relative condition
numbers are,

χ(LS, rel)

F (A) =
(

‖r0‖2
2

‖x0‖2
2 σ2

min

+ 1
)1/2 ‖A‖F

σmin

χ(LS, rel)

2 (A)


≤
(

‖r0‖2

‖x0‖2 σmin
+ 1
)

κ2

≥
(

‖r0‖2
2

‖x0‖2
2 σ2

min

+ 1
)1/2

κ2

(61)

where κ2 = σmax/σmin is the matrix condition number, and σmax and σmin are
the largest and smallest singular values of A. The ratios of the upper to the
lower bounds for both spectral condition numbers are at most

√
2.
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Corollary 5.2 (Optimal Error Bounds for LS) Continuing Theorem 5.1,
if x0 + δx solves the perturbed problem minu ‖b− (A + δA)u‖2, then

‖δx‖2

‖x0‖2
≤ χ(LS, rel)

2 or F (A)
‖δA‖
‖A‖

+ O
(
‖δA‖2

‖A‖2

)
,

where the matrix norms to be used with χ(LS, rel)

2 and χ(LS, rel)

F are the spectral and
the Frobenius norms, respectively.

Conjecture 5.3 (Spectral Condition Numbers for LS) The spectral con-
dition numbers are the upper bounds in Theorem 5.1.

5.3 Dependence on κ2
2

Section 5.1’s first error bound led Golub and Wilkinson to suggest that κ2
2 is

“relevant to some extent” [24, p. 144] to the least squares problem. The promi-
nence of this finding assured that it has been reexamined several times. Since
least squares error bounds traditionally have been formulated to exhibit κ2

2, the
discussions have been phrased in terms ameliorating its effect. The most detailed
analysis, by van der Sluis, concluded that least squares problems are sensitive
to κ2

2 very rarely.

1. Some authors write Table 4’s consensus coefficient of ‖δA‖2/‖A‖2 in the
normwise relative error bounds as(

‖r0‖2

‖x0‖2 σmin
+ 1
)

κ2 =
‖r0‖2

‖A‖2 ‖x0‖2
κ2

2 + κ2 . (62)

They summarize this by saying the bound is sensitive to κ2
2 unless ‖r0‖2

is small compared to ‖A‖2 ‖x0‖2, in which case the coefficient is more like
κ2. Björck [7, p. 17] appears to have originated this explanation though it
often appears in textbooks without attribution [23, p. 230] [32, p. 393].

2. Van der Sluis wrote the leading coefficient as [59, p. 251, eqn. 5.8],

‖r0‖2

‖x0‖2 σmin
κ2 =

‖Ax0‖2
‖x0‖2
σmin

κ2 tan(θ) , (63)

where θ is the angle between b and col(A). If ‖Ax0‖2/‖x0‖2 ≈ ‖A‖2,
then equation (63) gains a second factor of κ2. On the other hand, if
x0 has a comparatively small projections into A’s right singular vectors
corresponding to the largest singular values, then κ2

2 “plays no role” [59,
p. 251].

Interestingly, van der Sluis observed that κ2
2 is more likely to be irrele-

vant especially when κ2 is large. This is because b’s weight in the space
corresponding to a singular value σi is magnified in x0 by σi’s reciprocal.
Indeed, vt

ix0 = ut
ib/σi where ui and vi are left and right singular vec-

tors corresponding to σi. The scaling by 1/σi strongly favors the smaller
singular values over the larger when σmin � σmax.
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3. Stewart’s error bound in the full rank case of equation (49) contains a term
that can be rearranged as follows [48, p. 655, eqn. 5.11] [51, p. 158],

‖(Σ + E1)−1‖2
2

‖E2‖2 ‖r0‖2

‖x0‖2
=

tan(θ)
‖A‖2 ‖x0‖2
‖Ax0‖2

‖A‖2
2

σ2
min(Σ + E1)

‖E2‖2

‖A‖2
,

where E1 and E2 are submatrices of the orthogonally transformed δA
shown with error bound 10. The same rearrangement can be applied to
the leading coefficient of the consensus error bound,

‖r0‖2

‖x0‖2 σmin
κ2 =

tan(θ)
‖A‖2 ‖x0‖2
‖Ax0‖2

κ2
2 . (64)

The denominator mitigates κ2
2 because it varies from 1 to κ2. There is

no effect when ‖A‖2 ‖x0‖2 ≈ ‖Ax0‖2, equivalently when x0 has a compar-
atively large projections into A’s right singular vectors corresponding to
the largest singular values. This agrees with the finding of van der Sluis
whom Stewart credits for suggesting the analysis [48, p. 657] [51, p. 163].

With the benefit of Theorem 5.1, it is possible to examine the dependence on
κ2

2 in terms of the condition number itself. This analysis follows the approach of
van der Sluis in equation (63). The term ‖x0‖2 σmin in the condition number is
analyzed for situations where it scales with κ2 and thus contributes an additional
factor of κ2 to the condition number.

Equation (61)’s sharp bounds on the condition number depend on:

• σi=1,...,n, the singular values of A,

• x0, or equivalently, the coefficients bi=1,...,n of Pb in the basis of A’s left
singular vectors,

• r0 = (I − P)b, the portion of b orthogonal to col(A).

With this notation,

χ(LS, rel)

2 (A) ≈
(

‖r0‖2

‖x0‖2 σmin
+ 1
)

κ2

=

(
‖r0‖2√∑n

i=1(biσmin/σi)2
+ 1

)
κ2 . (65)

The first factor in equation (65) depends on σmax/σmin only if the coefficients
bi favor the term where σi = σmax. Randomly distributed coefficients have a
high probability that they would overwhelm this term since it is the smallest:
1 ≥ (σmin/σi) ≥ (σmin/σmax).5 Thus the denominator’s sum is proportional to

5This is van der Sluis’s observation that the chance of κ2
2 being relevant declines as κ2

increases.
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σmin/σmax if and only if b’s projection into the column space of A lies predomi-
nantly in the space of the largest singular value, or of singular values clustered
there. This is equivalent to ‖Ax0‖2 ≈ ‖A‖2 ‖x0‖2, in which case equation (65)
reduces to (

‖r0‖2√∑n
i=1(biσmin/σi)2

+ 1

)
κ2 ≈

(
‖r0‖2

‖Pb‖2/κ2
+ 1
)

κ2 (66)

=
(
tan(θ) κ2 + 1

)
κ2 . (67)

The whole expression is furthermore proportional to κ2
2 only when tan(θ) is

reasonably larger than 1/κ2. This is summarized in the following theorem.

Theorem 5.4 (Tangent Theorem) Suppose Problem 4.1 (LS) has A of full
column rank and exact solution x0 6= 0. The relative spectral condition number
is proportional to the squared matrix condition number if and only if:

1. ‖Ax0‖2 ≈ ‖A‖2 ‖x0‖2, equivalently, x0 lies in spaces corresponding to the
singular values of A clustered at σmax,

2. and tan(θ) is at least moderately larger than κ−1
2 ,

where θ is the angle between b and col(A). If these conditions are satisfied then
the constant of proportionality is roughly tan(θ) so that χ(LS)

2 (A) ≈ tan(θ) κ2
2.

Moreover, among least squares problems with the same θ and singular vectors
for A, the probability that a randomly chosen problem’s condition number will
be sensitive to κ2

2 declines as κ2 increases.

Theorem 5.4 is essentially van der Sluis’s although it is not formally stated
in his paper. It reiterates his finding that it is “not realistic” [59, p. 251] to
expect the errors of a linear least squares problem to be sensitive to κ2

2.
This theorem reveals a defect in the textbook description (item 1 in Sec-

tion 5.3) of when the least squares condition number may be sensitive to κ2
2.

Following the analysis of equation (62), the condition number always can be
written,

χ(LS, rel)

2 (A) ≈ ‖r0‖2

‖A‖2 ‖x0‖2
κ2

2 + κ2 ,

so κ2
2 always appears to be present. This is a false dichotomy because both κ2

2

and its coefficient in this equation vary with the singular values of A. Thus κ2
2’s

impact is undetermined even when this coefficient is large. See Example 6.1 in
Section 6.2. In contrast, Theorem 5.4 identifies the situations where κ2

2 appears
with a coefficient independent of κ2,

χ(LS, rel)

2 (A) ≈ tan(θ) κ2
2 .

In only these cases does the condition number vary unambiguously with the
square of the matrix condition number.
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5.4 Examination of the Problem’s Conditioning

Theorem 5.1’s equation (61) estimates the spectral condition number sufficiently
well to draw definitive conclusions about the conditioning of the problem.

Theorem 5.5 (Well Conditioned LS Problems) Suppose Problem 4.1 (LS)
has A of full column rank and exact solution x0 6= 0. The problem is well
conditioned with respect to perturbations of the matrix if and only if:

1. ‖r0‖2 is at most moderately larger than ‖x0‖2 σmin, and

2. A is well conditioned,

where r0 = b − Ax0 is the exact least squares residual, and σmin is the smallest
singular value of A.

Proof. From Theorem 5.1, χ(LS, rel)

2 (A) is with a factor of
√

2 from(
‖r0‖2

‖x0‖2 σmin
+ 1
)

κ2 ,

where κ2 is the condition number of A.

Stoer [52, p. 177, Zusammenfassung] [53, p. 213, summary] provides the
only previous discussion of Theorem 5.5’s criteria. Although technically it is
impossible to deduce sufficiency from upper bounds alone, Stoer concluded on
the basis of error bounds that the opposite criteria would imply the problem is
ill conditioned.

A puzzle that is not addressed in the literature is how to reconcile van der
Sluis’s conclusion that κ2

2 rarely affects the least squares problem with the view
that least squares problems are often difficult to solve accurately. Evidently
there is a more commonplace source of ill conditioning than κ2

2.
Further understanding of ill conditioned problems can be obtained by simpli-

fying equation (61) using an inequality associated with the matrix lower bound
[26]: ‖x0‖2 σmin ≤ ‖Ax0‖2 when A has full column rank. This leads to a lower
bound,

χ(LS, rel)

2 (A) ≥

√
‖r0‖2

2

‖x0‖2
2 σ2

min

+ 1 κ2

≥

√
‖r0‖2

2

‖Ax0‖2
2

+ 1 κ2

=
‖b‖2

‖Ax0‖2
κ2

= sec(θ) κ2 ,
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where θ is the angle between b and the column space of A. An upper bound is
similar,

χ(LS, rel)

2 (A) ≤
√

2

√
‖r0‖2

2

‖x0‖2
2 σ2

min

+ 1 κ2

=
√

2

√
‖r0‖2

2 + ‖x0‖2
2 σ2

min

‖x0‖2
2 σ2

min

κ2

≤
√

2

√
‖r0‖2

2 + ‖Ax0‖2
2

‖x0‖2
2 σ2

min

κ2

=
√

2
‖b‖2

‖x0‖2 σmin
κ2 .

Notice that the ratio of the upper bound to the lower bound is at most
√

2 κ2.(√
2

‖b‖2

‖x0‖2 σmin
κ2

)(
‖b‖2

‖Ax0‖2
κ2

)−1

=
√

2
‖Ax0‖2

‖x0‖2 σmin
≤
√

2
σmax

σmin

All this justifies the following theorem.

Theorem 5.6 (Secant Theorem) Suppose Problem 4.1 (LS) has A of full
column rank and exact solution x0 6= 0. The relative spectral condition number
has the following lower and upper bounds,

sec(θ) κ2 ≤ χ(LS, rel)

2 (A) ≤ sec(θ) κ2

√
2

‖Ax0‖2

‖x0‖2 σmin
, (68)

where κ2 is the spectral condition number of A, and θ is the angle between b and
the column space of A. Therefore sufficient conditions for the problem to be ill
conditioned are:

1. b is nearly orthogonal to the column space of A, or

2. A is ill-conditioned.

Theorem 5.6’s criteria are sufficient but not necessary because equation (68)’s
upper bound is weaker than equation (61)’s.

The theorem identifies a source of ill conditioning that is underappreciated in
the literature. Usually r0 being large (in comparison to Pb or some surrogate for
it such as ‖A‖2 ‖x0‖2) is interpreted to mean that the least squares problem is
sensitive to κ2

2 [59, p. 242, top]. In such cases any ill conditioning is attributed
to A. Theorem 5.6 shows to the contrary that θ is a separate source of ill
conditioning independent of the distribution of A’s singular values.
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6 Applications

6.1 Failure of Simple Iterative Refinement

This section examines a famous numerical experiment in terms of this paper’s
sensitivity analysis. Golub and Wilkinson’s [24] example that simple iterative
improvement fails for linear least squares problems is one of the most impor-
tant in numerical analysis, as measured by the research it inspired, see Table 1.
This failure is often mentioned in the literature, but because Björck [6] devel-
oped a provably effective improvement algorithm shortly thereafter, the simple
algorithm is seldom discussed in detail.

Businger and Golub in [13] had noted that the error, e = x0 − x, in a least
squares solution, x, also satisfies a least squares problem (and note, with the
same true residual, r0),

‖b−Ax0‖2 = ‖r −Ae‖2 where r = b−Ax .

In principle, e can be determined by solving this problem. There results a
computed correction ē, so that x can be iteratively improved by Figure 3’s
algorithm. This would produce a sequence of corrected solutions x1, x2, . . . .

A similar process had long been used for linear equations [32, p. 232]. There,
the sequence converges to a solution that is accurate to nearly the machine’s
precision and at a rate dependent on κ2. This is provided κ2 u < 1 where u is
the roundoff unit of the floating point arithmetic, and the residual calculation
uses higher precision arithmetic so that the computed residual r̄ ≈ r is very
accurate [22, p. 75].

When Businger and Golub tested Figure 3’s algorithm with the then-new
least squares solution method based on Householder transformations, they found
that some problems were not solved to full working accuracy [21]. Golub and
Wilkinson [24] reported one such case with A and b having integer entries, A
of full rank, and Atb = 0. The unique solution of the least squares problem is
therefore x0 = 0. The least squares solution method produced a computed x 6= 0
and the high precision computed residual r̄. One step of Figure 3’s algorithm
was performed by computing a correction, ē. Since x0 = 0, the true correction

1. Form an orthogonal factorization of A.

2. Use the factorization to calculate a solution, x, to minu ‖b−Au‖2.

3. Use higher precision arithmetic to calculate r̄, the residual b−Ax.

4. Use the factorization to calculate a solution, ē, to minu ‖r̄ −Au‖2.

5. Replace x by the calculated sum x + ē and repeat from step 3, as
needed.

-

Figure 3: Simple iterative improvement of a least squares solution.
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is e = −x, but the computed ē’s entries were roughly five orders of magnitude
smaller. Thus the iterative improvement step was performed with relative error

‖ e− ē ‖2

‖e‖2
≈ 1− 10−5 ≈ 1 .

This and subsequent iterations made no improvement in the computed solution.
An analysis of this test of Figure 3’s algorithm must distinguish between

three different corrections to the approximate solution: e, ẽ, and ē.

• The “true correction,” for which x + e = x0, is the solution of

min
u
‖r −Au‖2 ,

where r = b−Ax.

• The “intended correction” is ẽ, the true solution of

min
u
‖r̄ −Au‖2 , (69)

where r̄ is the vector computed for r in Figure 3’s step 3.

• The “computed correction” is ē, Figure 3 step 4’s computed solution for
equation (69).

With this notation, Table 5 lists many of the relevant quantities in Golub
and Wilkinson’s test. These data either are given by them [24, p. 147] or are
derived from their data. For example, the computed r̄ is available in scientific
notation of 11 decimal digits, while the solution of equation (69) can be derived
as ẽ = (AtA)−1Atr̄. This and the other derived quantities in Table 5 are formed
by exact, rational arithmetic [66].

Two different explanations for the breakdown of simple iterative refinement
focus on the two different parts of the error, e− ē = (e− ẽ) + (ẽ − ē).

1. This explanation is due to Stewart [50, pp. 320–321]. Regarding e− ẽ, the
computed approximate residual is,

r̄ = r + δr = (r0 + Ae) + δr ,

where δr is the error of evaluating r. In this notation equation (69) is

min
u

∥∥(r0 + Ae + δr)−Au
∥∥

2
,

which makes ẽ the solution of Au = Ae + Pδr where P is the orthogonal
projection into col(A). If Ae is subordinate to the rounding error term,
Pδr, then ẽ can’t be accurate, so any computed ē is inaccurate no matter
how well equation (69) is solved.

It is plausible that r̄’s rounding errors may cause trouble, but in this
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Table 5: Values of some quantities in the numerical example of Golub and
Wilkinson. The matrix A is the first five columns of the inverse Hilbert ma-
trix of order 6. The vectors b = r0, e = −x, ē, r̄ are given in [24, p. 147] as b1,
−x(1), δ(1), and r(1), respectively. Other quantities are derived from these.

quantity value

‖A‖F 8.89× 106

‖A‖2 8.89× 106

σmin 1.89

κ2 4.70× 106

‖e‖2 ≡ ‖x‖2 1.44× 10−3

‖ẽ‖2 1.44× 10−3

‖ē‖2 1.17× 10−8

‖e− ẽ‖2 6.27× 10−9

‖ẽ − ē‖2 1.44× 10−3

‖Ae‖2 2.77× 10−3

‖Aẽ‖2 2.77× 10−3

‖r0‖2 ≡ ‖b‖2 8.52× 103

‖r‖2 8.52× 103

‖r̄‖2 8.52× 103

(δr = r̄ − r) ‖δr‖2 2.86× 10−6

‖Pδr‖2 2.86× 10−6

sec(θ) = ‖r̄‖2/‖Aẽ‖2 3.08× 106

θ = ∠(r̄, col(A)) π/2− 3.25× 10−7

u = 2−39 1.82× 10−12
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specific case it is not why the algorithm failed. From Table 5,

‖Pδr‖2

‖Ae‖2
= 1.03× 10−3 ,

so rounding error does not overwhelm Ae. As a result, equation (69)’s
solution ẽ is a good approximation to the true correction e,

‖e− ẽ‖2

‖e‖2
= 4.37× 10−6 .

2. Regarding ẽ − ē, this is the difference between the true and computed
solutions of equation (69), in whose study Golub and Wilkinson [24] de-
rived Section 5.1’s first error bound. Since r̄ ≈ r, equation (69) has nearly
the same least squares residual, r0, as the original problem. Thus the
potentially largest term in equation (37)’s error bound for ē appears to
be ‖r0‖2 κ2

2, which Golub and Wilkinson noted would vanish only if the
original equations are consistent [24, p. 144, middle].

Indeed, from Table 5 it is true that

‖ẽ − ē‖2

‖ẽ‖2
= 0.99 ,

so the inability to solve equation (69) explains the test’s failure. However,
the equation violates Golub and Wilkinson’s hypothesis (1b),

‖A‖2 = 8.89× 106

‖r̄‖2 = 8.52× 103

}
� 1 ,

so their error bound, equation (37), does not actually explain the inability
to solve for ẽ accurately.

It is therefore new to examine simple iterative improvement, equation (69),
in terms of a sensitivity analysis of the least squares problem. From Theorem
5.1 and Table 5, the condition number of the solution ẽ is

χ(LS,rel)

2 (ẽ) ≈
(

‖r̄‖2

‖ẽ‖2 σmin
+ 1
)

κ2 = 1.47× 1013 .

This exceeds the reciprocal of the roundoff unit on the machine used for Golub
and Wilkinson’s calculations. Thus, even if equation (69) is posed with the
smallest representable backward error, the condition number is large enough to
account for no accuracy in the computed solution ē. In fact, due to the large
error in the computed solution ē, the exact size of its optimal backward error is
1.07× 107 as determined by Higham’s equation (22).

More generally, the sensitivity analysis of this paper supports an explanation
for the failure of simple iterative improvement that complements Stewart’s case.
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If δr, the rounding error of computing r̄, is subordinate to Ae, then r̄ has been
computed sufficiently well to enable equation (69) to determine a correction, in
particular, r̄ ≈ r. The least squares residual has a condition number that is no
worse than κ2 [23, p. 230], so for reasonable A and x it is likely that r is fairly
accurate, r ≈ r0. Altogether r̄ ≈ r ≈ r0, so r̄ is nearly orthogonal to col(A). The
secant Theorem 5.6 now says the least squares problem for the correction tends
to be unboundedly ill conditioned no matter how well conditioned the original
problem may be.

6.2 Ill-Conditioned Without κ2
2

This section presents a simple example that illustrates many of this paper’s
results about χ(LS, rel)

2 and especially about its relationship to κ2
2. The example

is a modification of Golub and Van Loan’s example [22, p. 141] [23, p. 223] which
was repeated by Higham [32, p. 393]. In their original version, the first entry of
b rather than the second is nonzero.

Example 6.1 (Ill Conditioned Without κ2
2) Let

A =

 1
α

 , δA =


ε

 , b =

 β
1

 ,

where 0 < ε � α, β < 1. In this example,

x0 =
[

β
α

]
, r0 =


1

 , x =
[

αβ+ε
α2+ε2

]
= x0 +

[
ε(α−βε)
β(α2+ε2)

]
.

Here are the conclusions to draw from this example.

• The relative spectral condition number’s two principal terms can be inde-
pendently manipulated to make the condition number large,

χ(LS, rel)

2 ≈
(

‖r0‖2

‖x0‖2 σmin
+ 1
)

κ2 =
(

1
β

+ 1
)

1
α

.

• Corollary 5.2’s optimal error bound for small perturbations is sharp. The
actual normwise relative error in this example is,

‖δx‖2

‖x0‖2
=

ε(α− βε)
β(α2 + ε2)

≈ ε

β α
.

• The tangent Theorem 5.4 correctly predicts that the condition number
does not depend on the squared matrix condition number. The theorem’s
first criterion fails because the quantities

‖Ax0‖2 = β and ‖A‖2 ‖x0‖2 =
β

α

are not equal.
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• The linear least squares problem can be ill conditioned (choose β small)
even when its condition number does not depend on the matrix condition
number squared.

• The textbook explanation, that the condition number depends on κ2
2 unless

the residual is small compared to the matrix and solution (see item 1 in
Section 5.3), is wrong. In this example, equation (62)’s coefficient

‖r0‖2

‖A‖2 ‖x0‖2
=

α

β

can be made arbitrarily large, yet the problem’s condition number does
not depend on κ2

2.

6.3 Error Bounds that Overestimate the Error

This section examines the consequences of varying from the literature’s consen-
sus in Table 4. Although most of the error bounds in the literature appear to
depend on the square of the matrix condition number, upon simplification the
dependence vanishes from many.

The bounds that always contain κ2
2 are those not equivalent to Corollary 5.2’s

optimal error bound, or in the Stewart’s terminology, that omit any mitigation
of κ2

2. These effectively replace ‖A‖2 ‖x0‖2 in equation (62) by its lower bound
‖Ax0‖2, or they remove the denominator from equation (64), both of which
replace the condition number by a weak upper bound,

tan(θ) κ2
2 + κ2 .

This unnecessarily overestimates the error when the matrix is at least moderately
ill-conditioned but the condition number does not actually depend on κ2

2 (which
are the majority of cases according to van der Sluis [59, p. 251] and Theorem
5.4).

To illustrate this effect, Table 6 specifies two instances of Example 6.1 for
which almost all the bounds in Section 5.1’s survey have been evaluated. Table 7
shows the ratios of the bounds to the actual error. This overestimating behavior
of the bounds that do not mitigate κ2

2 is apparent even when the matrix is only
slightly ill conditioned.

7 Conclusion

7.1 Narrative

It is interesting to note that many basic discoveries in numerical linear algebra
were made as a result of linear least squares problems. Solving the normal
equations was the original use for Gaussian elimination, by Gauss. See historical
references in Table 1. It was also the motivation for Cholesky’s [5] version of the
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Table 6: Two instances of Example 6.1 used in Table 7 to compare error bounds.

α β ε κ2 χ(LS, rel)

2

case (a) 0.5 0.002 0.00001 2 ≈ 1002
case (b) 0.01 0.002 0.00001 100 ≈ 50100

Table 7: Ratio of error bounds to actual error for most of the bounds listed
in Section 5.1 applied to two instances of Example 6.1 described in Table 6.
Case (a) has a very well conditioned matrix (κ2 = 2), while case (b) has a less
well conditioned matrix (κ2 = 100). The componentwise bound, number 14, is
evaluated using the sparsity matrix of A + δA as the reference matrix. Blue
indicates those bounds whose leading terms in Table 4 resemble Corollary 5.2’s
optimal first-order error bound.

ratio of bound
to actual error

source of bound eqn. case (a) case (b)

2. Björck, 1967 [7] (41) 1.002 1.004
3. Hanson and Lawson, 1969 [29] (42) 2.002 100.202
4. Pereyra, 1969 [44] (43) 2.006 111.460
5. Stoer, 1972 [52] (44) 1.002 1.002
6. Wedin, 1973 [62] (45) 1.002 1.003
7. Abdelmalek, 1974 [1] (46) 1.000 1.001
8. Lawson and Hanson, 1974 [36] (47) 1.002 1.003
9. van der Sluis, 1975 [59] (48) 1.502 1.012

10. Stewart, 1977 [48] (49) 1.000 1.000
11. Golub and Van Loan, 1983 [22] (50) 4.000 102.000
14. Higham, 1990 [31] (54) 1.002 1.002
15. Wei, 1990 [64] (55) 2.012 2.018
16. Higham-Wedin, 1996 [32] (56) 1.504 1.015

lapack, 1992 [2] 4.000 102.000
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elimination algorithm, and for interpreting the algorithm as matrix factoring,
by Banachiewicz [4] and Dwyer [17]. An unrelated third source for triangular
factoring and likely the person who elevated it to folklore was von Neumann.

“We may therefore interpret the elimination method as the combina-
tion of two tricks . . . .” [41, p. 1053]

Matrix factoring became a paradigm for numerical analysis roughly twenty
years after these pioneers. It was then realized that numerical problems might
be avoided by using orthogonal factoring. For example, Householder [33, p. 341]
noted that his transformations could calculate the upper triangular Cholesky
factor of AtA. He did not actually explain how to solve linear least squares
problems without forming the normal equations. Instead it was Golub [21] [50,
p. 324] who described essentially the algorithm that is still used today.

This awakened interest in the sensitivity analysis of least squares [51, p.
151]. Golub and Wilkinson derived an error bound whose leading term sug-
gested “although the use of orthogonal transformations avoids some of the ill
effects inherent in the normal equations, the value of κ2

2 is still relevant to some
extent” [24, p. 144]. Van der Sluis commented that “the serious of this prog-
nosis might be doubted since only an upper bound is given, were it not that
numerical experiments seem to confirm it” [59, p. 242]. See the discussion of
this experiment in Section 6.1.

Golub and Wilkinson’s finding was “something of a shock” [59, p. 241].
Whatever its cause, the negative result meant that orthogonal factorization
would not be a panacea for numerical troubles. Some measure of the upset
can be taken from the quantity of papers that followed. Many of the error
bounds surveyed in Section 5.1 have their origin in this period.

7.2 Summary

This paper has made a thorough review of the literature ensuing from Golub
and Wilkinson’s result of thirty-five years ago (Table 1). This has been used
to guide the application of new methods from real analysis and optimization
theory in drawing definitive conclusions about linear least squares problems.
All the backward (Tables 2, 3) and forward (Tables 4, 7) error bounds in the
literature have been compared and contrasted in a systematic fashion in light of
the optimal bounds made possible by this paper’s new methods of analysis.

Specifically, some results (Theorem 3.3) from the sensitivity analysis of op-
timization problems were used to derive asymptotic formulas for the size of
optimal backward errors for linear least squares problems. A simple asymptotic
expression for the size in the Frobenius norm (Theorem 4.2) showed how the ex-
act formula of Waldén, Karlson, and Sun [61] behaves for small perturbations.
This expression and bounds in the literature suggested a computable asymp-
totic formula (Theorem 4.4) that may provide a means to estimate the optimal
backward error in practice.
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It was further shown that the size of optimal backward errors, or asymp-
totic expressions for it, can be used to evaluate condition numbers (Theorem
3.5 and Corollary 3.6). A simple expression was found for the Frobenius norm
condition number of full rank problems, and a sharp estimate was derived for
the spectral norm condition number of the same problems (Theorem 5.1). This
and a consensus of the error bounds in the literature suggested a conjecture for
the exact spectral condition number (Conjecture 5.3). The sharp bounds on the
condition number were used to prove some criteria, which have appeared in the
literature, for the condition number to depend on the square of the matrix condi-
tion number (tangent Theorem 5.4), and for the solution to be well conditioned
with respect to perturbations of the matrix (Theorem 5.5). A mechanism for
ill conditioning that has not been emphasized in the literature was discovered
(secant Theorem 5.6).

These theorems and the understanding they provide were then illustrated
by examples. They explained the historic numerical experiment of Golub and
Wilkinson (Section 6.1). They motivated a simple example that demonstrated
fallacies in textbook explanations of ill conditioning (Section 6.2). Finally, they
revealed a situation in which some error bounds in the literature unnecessarily
overestimate the error (Section 6.3).

7.3 Open Questions

The present work suggests several open questions. The first deals with calculat-
ing the size of optimal backward errors for linear least squares.

1. How can Theorem 4.4’s calculable estimate µ̃(LS)

F (x) be efficiently evalu-
ated, and how good is it in estimating the optimal backward errors of
actual computations?

A satisfactory answer to both questions would resolve a quarter-century
old challenge posed by Stewart and Wilkinson [49, p. 6–7] and reiterated
by Higham [31, p. 201].

The next three questions address the conditioning of least squares solutions.

2. Either by example or further analysis, prove or disprove Conjecture 5.3.

A very interesting answer would be to identify a δA that maximizes Stoer’s
equation (58) for δx.

3. Does equation (3) also give the condition number of rank deficient linear
least squares problems?

4. If the answer to question 3 is no, then rank deficient problems may become
ill conditioned in other ways than by increasing the size of equation (3)’s
two factors. What are the other ways, if any?

Some questions concern the related matter of the least squares residual.
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5. Are the several bounds for the error in the least squares residual the same,
or do they have significant differences of the kind that Tables 4 and 7
reveal for the bounds on the error in the solution?

Error bounds for the residual can be found in [7, p. 16, eqn. 7.7] [22, p.
141, eqn. 6.1-11] [23, p. 228, eqn. 5.3.9] [32, pp. 392, 394, eqns. 19.2, 19.10]
[51, p. 160] [62, thm. 5.1].

6. What is the optimal condition number of the linear least squares resid-
ual with respect to perturbations of the matrix? Is the residual better
conditioned than the solution as is often suggested?

The next set of questions suggest applications of this paper’s methods to other
kinds of least squares problems.

7. What is the size of the optimal backward errors of linearly constrained
linear least squares problems (LLS)? What is the condition number?

Cox and Higham [14] [15] found approximations for both quantities. It
seems likely that the optimal values can be found by the methods of this
paper. Use Theorem 3.3 to asymptotically estimate the size of the optimal
backward errors, and then use Corollary 3.6 to evaluate the condition
number.

8. Theorem 3.3 and Corollary 3.4 can be used to asymptotically estimate
the size of the optimal backward error in the coefficients of least squares
problems with Toeplitz coefficient matrices. That is, a coefficient should
receive the same perturbation wherever it appears in the matrix. (This
is a form of structured backward error.) Does the asymptotic size of the
optimal backward error have a simple formula in terms of the Toeplitz
coefficients?

This generalizes the problem for linear equations which was considered by
the Highams [30] and by Varah [60].

9. Continuing the previous question, either by an explicit formula or numer-
ically, examine the stability of the many specialized algorithms for solving
Toeplitz linear least squares problems that are cited in [27, p. 364, top].

Gu [28] [27, p. 365, lines 9–11] applied this a posteriori approach to stability
analysis using Higham’s equation (22) for the optimal size of unstructured
backward errors. For structured backward errors do the conclusions about
which algorithms are stable differ from his?

Lastly are two questions of basic importance to numerical analysis.

10. Can Demmel’s conjecture about condition numbers can be reconciled with
the linear least squares problem?

For many problems in numerical linear algebra, Demmel [16] has shown



7 CONCLUSION 54

that the condition number is related to the distance to the nearest ill-posed
problem. Specifically, he suggests that the reciprocal of the condition num-
ber is a measure of the relative distance to the nearest ill-posed problem.

For example, if A is nonsingular, then Section 3.3’s example shows that
the relative spectral condition number of solving Ax = b is

1
χ(LE, rel)

2

=
σmin

σmax
=

σmin

‖A‖2
.

The numerator, σmin, is known to be the distance (as measured by the
spectral matrix norm) to the nonsingular matrix nearest A, while the re-
ciprocal’s denominator makes this distance relative to the size of A.

Demmel’s conjecture is not obviously true for the linear least squares prob-
lems. Theorem 5.1’s sharp bounds for χ(LS, rel)

2 give,

1
χ(LS, rel)

2

≈ σmin

‖A‖2

(
‖r0‖2

‖x0‖2 σmin
+ 1
)−1

.

This quantity seems unrelated to the distance to the nearest ill posed
problem. It is known that σmin is the spectral distance to the nearest rank
deficient matrix, and ‖A‖2 again makes the distance relative to the size
of A. However, the final term can make the supposed distance arbitrarily
small by varying r0.

11. Equations (11) and (12) show that, for an approximate solution x ≈ x0

of a numerical problem F (y0, x0) = 0, the size of optimal backward errors
asymptotically equals a norm of the numerical problem’s residual, F (y0, x).
If the backward errors are measured by the 2-norm, then this norm of the
residual is defined by ∥∥[J1F (y0, x0)]† ·

∥∥
2

.

The norm is in fact unique [25, thm. 6.3]. It is appropriate to call it the von
Neumann norm because the backward errors’ dependence on the residual
was originally noted by von Neumann and Goldstine [41, p. 1093], and
more recently by Sun [54, p. 358].

For the linear least squares problem, whose residual function is F (A, x) =
At(b−Ax) = Atr, equation (33) shows that the von Neumann norm is

‖ · ‖(LS vN)

F =
∥∥(‖r0‖2

2 I + ‖x0‖2
2 AtA)−1/2 ·

∥∥
2

.

That is, the Frobenius norm size of optimal backward errors for the ap-
proximate solution x asymptotically equals ‖Atr‖(LS vN)

2 . What are the von
Neumann norms of other numerical problems?
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Nomenclature

A coefficient matrix in linear equations or linear least squares
problems

Bc(r) the open ball with center c and radius r in whatever space is
indicated

b inhomogeneous vector in linear equations or linear least
squares problems

bi coefficient corresponding to σi of Pb expanded in a basis of
A’s left singular vectors

col(A) the column space of A

DF (y0) the Fréchet derivative of f evaluated at y

J1F (y0, x0) the Jacobian matrix of derivatives with respect to F ’s first
block of variables evaluated at (y0, x0)

J2F (y0, x0) like J1F (y0, x0) but for the second block of variables

F (y, x) the residual function of data, y, and solutions, x, that defines
a numerical problem

F (LE) = Ax− b, the residual function (of data A and solution x) for
linear equations Au = b

F (LS) = At(b−Ax), the residual function (of data A and solution
x) for the linear least squares problem minu ‖b−Au‖, see
equation (31)

κ2 = σmax/σmin, the spectral condition number of A

λmin(M) smallest (most negative) eigenvalue of symmetric matrix M

µ(x) size of the optimal backward error of a numerical problem for
the approximate solution x, equation (4)

µ(0)(x) a function that asymptotically equals µ(x) at x0 and that is of
the form ‖F (y0, x)‖(vN) where the von Neumann norm ‖ · ‖(vN)

is independent of x, see Theorem 3.3, equation (11), and open
question 11
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µ(LE or LS)

2 or F (x) = µ(x) for the coefficient matrix of:

• (LE) linear equations, see equation (19),

• (LS) least squares, equations (20) and (22)

and if present the 2 or F signifying that the matrix
perturbations are measured in the spectral or Frobenius
norms, respectively

µ̃(LS)

F (x) a function that asymptotically equals µ(LS)

F (x) at x0 and that is
computable because it does not depend on x0, see Theorem 4.4

µ(LS, 0)

F (x) = µ(0)(x) for the coefficient matrix of least squares problems
with the matrix perturbations measured in the Frobenius
norm, see equations (33) and (34) in Theorem 4.2 and
Corollary 4.3

o( · · · ) Landau’s little o notation for a quantity that converges to 0
more quickly than the expression inside the parentheses

P orthogonal projection into col(A)

σi a nonzero singular value of A

σmax(M) largest singular value of matrix M , but if no matrix is
specified then of matrix A

σmin(M) smallest nonzero singular value of matrix M , but if no matrix
is specified then of matrix A

r = b−Ax, approximate residual of linear equations or linear
least squares problem

r0 = b−Ax0, true residual of linear least squares problem

ρ(M) spectral radius (largest magnitude of any eigenvalue) of
matrix M

θ angle between b (or the inhomogeneous vector in a least
squares problem) and the column space of A

u arithmetic precision, machine epsilon, roundoff unit, unit
roundoff

v(A) vector that lists the matrix’s entries column-by-column, see
Figure 1
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x approximate solution of a numerical problem, especially linear
equations or linear least squares

x0 true solution of a numerical problem, especially linear
equations or linear least squares

χ(abs or rel)(y0) absolute or relative condition number of a numerical problem
with respect to perturbations of the data y0, equations (5) and
(6) respectively

χ(LE, abs or rel)(A) = ‖A−1‖ ‖x0‖ or ‖A−1‖ ‖A‖, respectively, the absolute or
relative condition number of linear equations Au = b with
respect to perturbations of A

χ(LS, abs or rel)

2 or F (A) absolute or relative condition number of the linear least
squares problem for perturbations to the solution measured by
the 2-norm, and perturbations to A measured by the spectral
or Frobenius norms, see Theorem 5.1

y0 data of a numerical problem, F (y, x) = 0, for which x0 is a
true solution

¯ overbar indicating a computed value approximating the
quantity underneath

∗ adjoint, used rather than t in equation (11)’s subexpression
‖J1F (y0, x0)∗f‖ to emphasize that the norm is for the space
of functionals dual to the matrix’s column space

t matrix transpose

† matrix pseudoinverse

' relationship of asymptotic equality among functions defined in
the neighborhood of a point, x0, see Definition 3.1

≤̇ used by Stoer to indicate that his error bound neglects terms
that are second order in δA and δb, see equation (44)
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